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Abstract

This paper addresses the issues faced when constructing an operating system and its
kernel with object-oriented technology. We first propose object/metaobject separation, a
means of constructing an object-oriented operating system and its kernel. This method
divides the implementing system facilities and applications into two types: objects and
metaobjects. This paper presents the concept of object/metaobject separation and discusses
why object/metaobject separation is required in terms of limitations in the micro-kernel and
object-oriented technologies. We also discuss an example of using object/metaobject sepa-
ration as implemented in Apertos. This paper then proposes mechanisms which efficiently
implement object/metaobject separation. These are characterized by meta-level context
management, and are implemented in the Apertos operating system. Meta-level context
management is designed to reduce the overhead of control transfer between an object and
its metaspace. Here, metaobjects reflectors, MetaCore, Context, and Activity are introduced
to represent the metahierarchy of an object’s execution. Finally, we present the evaluation
results of the Apertos implementation, and discuss the relationship with previous work.

1 Introduction

Recently, object-oriented technology has become popular for the construction of complicated
systems, enabling an operating system to again be constructed using that technology. Object-
orientation encourages modularization, increases reusability and maintainability, gives users/pro-
grammers a single unified perspective of a system, as well as providing other advantages. Exam-
ple systems are Chorus [Rozier et al. 88], Amoeba [Tanenbaum et al. 90], Clouds [Spafford 86],
and Choices [Campbell et al. 91]. Also, micro-kernel technology is widely used for constructing
operating systems. A micro-kernel defines minimum functions, on top of which richer system
functions are implemented. Systems such as V-kernel [Cheriton 88], Mach [Accetta et al. 86],
and the systems mentioned earlier all use this technology.

However, recent trends in the computing environment, such as mobile computing and massive-
scale distributed computing environments, require a new technology that goes beyond micro-
kernel and object-oriented technologies in the construction of an operating system. Although we
can characterize this environment using several keywords, this paper focuses its attention on one
crucial characteristic, i.e., open-endedness. That is, the system’s behavior cannot be predicted
from the system configuration time. The increasing scale and complexity of the system also
forces users and programmers to reduce their demands on the system, lest it becomes impossible
to accurately predict the number of entities, such as workstations, mobile terminals, devices, and
activities. Further, due to a high degree of distribution, it is difficult for users and programmers
to be freed from their dependence on the environment.



Micro-kernel and object-oriented technologies are limited to addressing the open-endedness
property. A micro-kernel provides no policies other than the minimum mechanisms. However,
we need a discipline with which policies or system services can be implemented on top of the
micro-kernel. Also, since an object is open-ended, it changes its properties during its execution
or lifetime. This sometimes requires the extension of the mechanisms provided by a micro-
kernel. For instance, if an object provides a realtime constraint, a micro-kernel must provide a
mechanism for realtime scheduling. The possibility of the extension of the micro-kernel weakens
the advantages of micro-kernel technology.

Object-oriented technology addresses these issues in micro-kernel technology. We, however,
encounter difficulties when we support objects in constructing operating system kernels. Even
though object-oriented technology offers the advantages of encapsulation (or information hiding)
for creating a unified interface between objects, we need a mechanism to break this encapsulation
and support objects by operating system kernels in a uniform way.

This paper proposes object /metaobject separation, a means of constructing an object-oriented
operating system and its kernel, which divides objects implementing system facilities and ap-
plications into two types: base-level objects (or simply objects) and metaobjects. An object is
an entity that can be considered as being individual, i.e., it can be shared by another object.
A metaobject is a member of a metaspace that provides an object with the optimal execution
environment.

The term “meta” is defined in this paper such that:

e it is relative to a “base” (or the base-level of an entity);

e it provides a “base” with an interface and facilities to define the base-level abstraction

and semantics that are available to base-level programming; and

e it is an environment in which an object is active.
In this respect a metaspace, in some senses, roughly corresponds to a virtual machine or an
optimal operating system for objects. In terms of a virtual machine, a (virtual) instruction set
is provided for objects, which defines a software architecture or a software model for object
programming. For example, communication protocols between objects, such as synchronous,
asynchronous, and realtime protocols, are defined by their metaspaces. In terms of an operating
system, an object’s execution environment is given by its metaspace, i.e., the metaspace supports
an object as a cooperative entity with its environment. For example, if objects need to be
scheduled in realtime, their metaspaces provide a realtime scheduler and memory management
for that purpose.

In Section 2, we address the concept of object/metaobject separation and discuss why ob-
ject/metaobject separation is required in terms of the limitations of micro-kernel and object-
oriented technologies. We also introduce an example of using object/metaobject separation
as implemented in Apertos. Section 3 proposes mechanisms that efficiently implement ob-
ject/metaobject separation. These mechanisms are characterized by meta-level context man-
agement, and are implemented in the Apertos operating system. In Section 4, we present the
evaluation results of the Apertos implementation. Section 5 then discusses the relationship with
previous work. Finally, Section 6 concludes this paper by discussing the current status of the
implementation.

2 Object/Metaobject Separation

As we mentioned in the introductory section, object-oriented technology is again becoming pop-
ular in the construction of operating systems. This is because it facilitates the implementation
of complicated systems, including operating systems. Before presenting object/metaobject sep-
aration, we will discuss the definition of an object. Throughout this paper, we define an object
as follows. An object is an entity which can be considered as being an individual. That is, an



object is a unit to be shared by another object. Each object has a name (or an identifier) with
which others denote that object, i.e., an object has an identity allowing it to be distinguished
from other objects.

This basic property creates the following unique advantages. First, it encourages modulariza-
tion. An object is a unit of protection, which prohibits erroneous and/or malicious access to an
object. Actually, the internals of an object are accessed through its public interface as exported
to other objects. Second, this property increases the reusability and maintainability. Since the
internals of an object or the implementation of an object cannot be seen by other objects, an
existing object can be replaced with a new one, if its interface is preserved. This is helped by
class hierarchy in object-oriented technology. Finally, it gives users and programmers a single
perspective of the system. An object is the only constituent of the system. When we denote a
system service, the only entity we can see is the object.

Based on this definition, this section presents object/metaobject separation. Then, we dis-
cuss why object/metaobject separation is required, and discuss the limitations of micro-kernel
and object-oriented technologies. Also, this section presents applications of object/metaobject
separation.

2.1 Proposal of Object/Metaobject Separation

We introduce the notion of “meta” into operating system construction and application program-
ming. That is, objects implementing system facilities and applications are “base” objects (or
objects) or “meta” objects (or metaobjects). In detail, object/metaobject separation is defined
as follows:
e each object is active in its own execution environment which is given by the group of
metaobjects forming its metaspace; and
e a metaobject is an object cooperatively providing an interface and facilities for (the base-
level of) objects to define object abstraction and semantics.
This is the principal definition of object/metaobject separation. We extend this below.

Here, consider the construction of a system supporting object-oriented programming. It is
difficult to determine an object’s granularity during system design. This is because there are
three factors; a protection unit, a memory segment which acts as an information container,
and an activity which is the thread of control; which should be independently considered and
cooperatively designed. UNIX! is an example of a system combining these three factors. By
introducing threads, the activities can be separated from these three factors.

Recently, the implementation of systems supporting object have shown a trend towards man-
aging these three factors out of the kernel. Amoeba is an example in that its kernel knows
nothing about an object. Since an object is a unit of protection, it is protected from others by
capabilities managed by server processes. Also, a fine-grained object is protected from others by
a programming language. The Amoeba kernel provides a memory segment, but a language sys-
tem manages that segment for objects. Scheduler activation [Anderson et al. 91] and first-class
user-level thread [Marsh et al. 91] are other examples to handle activities out of the kernel.

With the first definition, an object is free from the internal representation that is usually
determined by the underlying operating system. This approach to the above three factors
differs from that used in existing systems. Since an object is defined by its metaspace, i.e.,
an object’s identity is given by that metaspace, the policy used to handle these three factors
is determined by the metaspace. For example, a metaspace can define objects as an array of
structures, but we can regard an element of that array as being an object from outside that
object, because the only way to see that object, i.e., to invoke a method of that object, is to
use a facility of its metaspace. In this respect, a metaspace shows the objects that are visible
from outside the objects.

!'UNIX is a registered trademark of AT&T Bell Laboratories.



With the second definition, a metaobject represents a description of an object, i.e., an object’s
state and a group’s state. In this respect, concurrent activities within a metaspace can be
introduced to increase the availability of metaobjects up to implementation, and we can define
these as concurrent objects [Yonezawa and Tokoro 87]. Also, it is possible for two or more
metaspaces to share a metaobject, as a means of keeping common information among those
metaspaces. This enables us to reduce the cost of negotiation between metaspaces to solve
conflicts between them. By defining a metaobject as an object, the second definition implies
that the system can be constructed by the hierarchical structure of objects and metaobjects.

In addition to this definition, we allow an object to change its relationship with its metaspace,
i.e., an object can exchange its metaspace with another. This amplifies the advantages of
object/metaobject separation. This also facilitates the implementation of object migration.
Object migration is when an object travels to another metaspace. Object migration enhances the
following capabilities of the system: system extensibility, software upgradability, environment
support for mobile computers, environment-dependent system configuration, etc.

2.2 Issues in Micro-kernel and Object-Oriented Structuring

Recently, micro-kernel technology has been widely used to implement operating systems. It is
beneficial for the independence of architectural (or hardware) heterogeneity of a system, because
it defines the minimum set of system functions, i.e., it can be considered as being standard for
inter-operability. It is, however, hard to extend the primitives provided by a micro-kernel when
we need to support a new service which cannot be completed without kernel support. An
example is a facility for realtime computing. RT-Mach has introduced a realtime facility to the
Mach kernel [Tokuda et al. 90]. This is a crucial limitation on environments with property
open-endedness, because new services that were not expected when the system was configured
often emerge.

Micro-kernel technology is also helpful for the modular construction of operating systems.
A micro-kernel usually supports a low-level scheduler, virtual memory management, and a
mechanism for process communication. Additionally, many system services are implemented as
independent modules (or processes in some systems) using this minimum set. It usually defines
the basic abstraction of the system, for example in the Mach operating system, processes,
threads, objects, and ports are provided by a kernel. In this respect, a kernel divides the system
into two layers: one uses the abstraction implemented by the other layer (i.e., it acts as a kernel).
Although micro-kernel technology increases the architectural independence of kernel software,
it is not the best way of constructing an operating system. It says nothing about realizing
independent modules, i.e., no guidelines or rules are provided by that technology. We need no
longer be concerned about which services are implemented as modules or which functions are
combined into a module.

Object-oriented technology can solve this issue to some degree. That is, it provides a discipline
when designing modules, i.e., an object is an independent module, functions are classified by
classes, and class hierarchy helps us to reuse existing functions. Also, object-oriented technology
addresses the extensibility of the operating system in the sense that objects constituting the
system can be dynamically replaced with new ones to support new services. The unified interface
for an object helps us to replace an existing object.

However, object-orientation is not acceptable in the following case, because it creates a number
of problems. That is, we have to overcome several difficulties when we consider everything as
an object. Particularly affected are:

e the debugger, which needs to inspect the internals of an object;

e the object manager, which needs to access meta-data such as the representation of a
message and an object’s state information to deliver a message to the target and to
control object activities; and



e the group manager, which needs to know the dependency between objects.

Since the private methods of an object are permitted to access its internals, we need a special
method of exporting these to a debugger. Since meta-data is data that represents an object’s
state as well as a group’s state, it can hardly be maintained by the object itself. If it is separately
maintained by an object, it is difficult to keep meta-data consistent with the actual state of
concurrently executing objects. Since dependency between objects is dynamically changing and
determined according to the degree of global information, we need a way of keeping track of
object-object interaction. These difficulties are caused by the object’s basic property of being
individual.

2.3 Contributions of Object/Metaobject Separation

Due to the issues raised in the previous discussion, we propose object/metaobject separation.
Firstly, a metaspace is a collection of metaobjects and is dynamically constructed to be optimal
for objects. That is, we can create a new metaspace for a new service. This has advantages
over micro-kernel technology in terms of extensibility, and supports the open-ended property.

Secondly, since a metaspace can be a virtual machine devoted to objects, the architectural
independence of objects can be achieved in that:

e when an object and its group change their property, we can move them to another metas-
pace (or a newly created metaspace) to satisfy that change; and
e we can create a new metaspace for a new system service that emerges dynamically.
In this way, the configuration of the system determined at system boot-up can be extended
by creating a new metaspace and changing an object’s metaspace. This increases the system’s
reconfigurability and extensibility.

Thirdly, object/metaobject separation can overcome some of difficulties highlighted in the
previous subsection. That is, since a metaobject constituting a metaspace represents a descrip-
tion of an object, the internals of an object, the execution state of an object, the dependency
between objects, etc. can be accessed through a metaobject. For instance, a debugger is imple-
mented at the meta-level of an object to be examined.

Lastly, in object-oriented technology, there is no distinction between an object and its metaob-
ject for that object. This distinction is crucial when designing complicated operating systems.
Object/metaobject separation forces us to be aware of which objects are “meta” of other ob-
jects and which objects are running in which metaspace, both during programming and at run
time. This clarifies the structure and the configuration of the system. Also, this distinction
encourages us to design a new operating system for experimental purposes, which is augmented
by the class hierarchy.

2.4 Example of Object/Metaobject Separation

This subsection demonstrates object/metaobject separation in the design of a virtual memory
system, implemented in the Apertos operating system. In the design, the memory metahierarchy
of the system, which is a metahierarchy dedicated for memory management, has been so designed
as to obey the concept of object/metaobject separation. That is, the primary concerns of the
virtual memory design are how the system is organized and who is responsible for managing
the local storage of an object. Figure 1 shows our answer to these concerns. Here, a shaded
rectangle denotes a metaspace, which is represented by a reflector presented later.

At the object-level, we can only handle objects. The internals of an object are protected by
the system. At the meta-level of that object, the internals of the object, i.e, its local storage,
are represented by several segment metaobjects. A specific property of an object’s local storage
is given by segment metaobjects. For example, when local storage needs to be managed with a
specific page replacement algorithm, it is peculiar to an object’s segment metaobject. Any area
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Figure 1: Memory Metahierarchy of the Apertos Virtual Memory System

in memory can be managed inside a segment metaobject as a unit for page replacement. The
correspondence between the memory chunk size in a segment metaobject and the underlying
physical page size is taken by the memory metahierarchy. Also, in Apertos, several policies are
provided as classes for constructing the virtual memory system. That is, a segment metaobject
is created by a class which implements a property of an object’s local storage. Note that, as
discussed in [Yokote et al. 89], the class hierarchy and metahierarchy is orthogonal in Apertos.

Then, we introduce another metaspace for metaobjects to be objects. In the memory metahier-
archy, page metaobjects are the “meta-"metaobjects of a segment metaobject. That is, the local
storage of a segment metaobject is represented by page metaobjects at its meta-level. In a sim-
ilar way, a specific property of a segment’s local storage is given by page metaobjects. In
Apertos, a page corresponds to a physical memory page, and a segment’s page metaob jects are
programmed not to move to secondary storage.

According to the definition of object/metaobject separation proposed in Subsection 2.1, an
object and its segment metaobject can change their metaspaces to others. In Apertos, this
is used to create a dynamically reconfigurable and extensible virtual memory system. The
configuration determined at system boot-up can be changed by creating a new metaspace which
implements a new property of an object’s local storage, and an object changes its metaspace to a
new one. This means that an object’s local storage is to be managed by a policy that is different
to that of the original one. At any level of memory metahierarchy, a metaobject implementing
storage management has independence of its metaspace. Hence it can be reconfigurable and
extensible.

2.5 Summary

In this paper we claim that the (micro-) kernel of an operating system in an open system can-
not provide the minimum set of functions on which system services are constructed, but should
provide a means of encouraging ob ject /metaobject separation. Further, object-orientation advo-
cates using an object as an individual with identity and providing object/metaobject separation.
Therefore, there are some difficulties in constructing an operating system and its kernel using
object-orientation, hence we propose object/metaobject separation in which:
e an object is active in its own execution environment, which we call metaspace;
e a metaobject is an object constituting a metaspace, and cooperatively providing an inter-
face and facilities for (the base-level of ) objects to define object abstraction and semantics;



e objects and metaobjects have a relative relationship and are hierarchically structured; and
e an object can replace its metaspace with another.
These are the essential characteristics for addressing the open-endedness property.

3 Implementation in Apertos

An Apertos object is defined as in Section 2, that is, it is an individual and has identity. We
make this assumption when implementing object/metaobject separation in Apertos. All metas-
paces are constrained by this object definition upon their implementation. This section first
discusses the issues of implementing object/metaobject separation in Apertos. We also present
the Apertos implementation in terms of the introduction of reflectors, MetaCore, and Context.
We then propose mechanisms that can efficiently implement object /metaobject separation. This
is meta-level context management.

3.1 Implementation Issues

Since there are two types of objects in the system, objects and their metaobjects, the following
two issues of implementing ob ject /metaobject separation have to be considered:
e how a metaspace is created /constructed; and
e how the relationship between an object and its metaspace is maintained. In particular,
— when an object interacts with its metaspace, or with a metaobject within that metas-
pace;
— when a metaobject interacts with objects;
how an object interacts with its metaspace, or with a metaobject within that metas-
pace; and
— how a metaobject interacts with objects.

First, we have to design the metaspace implementation. We have introduced a reflector that is
a metaobject that creates a metaspace. We have designed it to be an object that interacts with
a metaobject through a reflector representing its metaspace. Thus, an object explicitly invokes
a metaobject with the facility provided in its reflector.

Then, we have to design the representation of an object given by its metaspace, i.e., a group
of metaobjects. We have clearly separated the three factors discussed in Subsection 2.1. That
is, a memory segment for an object as an information container is a metaobject. The storage
of an object consists of several memory segment metaobjects in its meta-level, as presented in
Subsection 2.4. Since we have designed an object as a concurrent object, a single activity is
associated with each object. An activity as a thread of control is represented by a Context
metaobject. To overcome the protection unit issue, we have introduced reflective object man-
agement. The details are discussed in [Yokote et al. 91a]. In short, compilers and class systems
cooperatively provide optimal protection for an object.

Further, since there is an object running in kernel/system mode, we have to provide a mech-
anism for changing the object’s execution mode. In some implementations, objects running in
kernel mode are combined into a single module, usually called a kernel, and are invoked by is-
suing a system call instruction. Unlike those implementations, we have separated the execution
mode (or protection) and the module so that a kernel-mode object can be created outside the
kernel.

In these respects, the key is the efficient implementation of control transfer between an object
and its metaspace. Table 1 shows the number of system call instructions (trap in MC68030
and syscall in MIPS R3000) executed for a specified operation. These numbers have been
measured for the previous implementation of the Apertos kernel [Yokote 92]. The following
subsection proposes the new mechanisms by which an object efficiently passes control to its
metaspace.



Table 1: Trap Instruction Number upon Execution of a Specified Operation

operation # of trap
Method invocation (call/reply round-trip, same metaspace) 4
Method invocation (call/reply round-trip, different metaspaces) 11
Memory segment creation (4KB segment) 44
Object creation (13KB text and 7TKB data) 87

3.2 The Apertos Implementation

The previous implementation of Apertos is described in [Yokote 92]. We have newly imple-
mented the Apertos kernel based on that experience. The new implementation introduces the
following special metaobjects:

e a reflector, representing a metaspace;

e MetaCore, located at each processor as a micro-kernel; and

e Context, virtualizing the underlying processor for representing an activity.
The following is designed to enable efficient implementation.

The Apertos kernel part is constructed as shown in Figure 2. In the implementation, a metas-
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pace is determined by the references created by a reflector to metaobjects. In the figure, mZero
represents a metaspace consisting of metaobjects Pager, Pages, Exec, Activity, and Namer, and
all of the reflectors in the system are supported by mZero, To have these metaobjects behave
objects, the mCore reflector is introduced. This represents a metaspace consisting of a single
metaobject. In the current implementation, mCore assumes the existence of the above metaob-
jects when Apertos boots, thus avoiding circularity in the memory allocation requests. mSystem
is the metaspace for system objects, including metaobjects implementing the virtual memory
system and network protocol handlers. mDTive is the metaspace for device driver objects, which
provides facilities for device driver programming.
MetaCore provides the minimum functions that are used for:
e transferring control between an object and its metaspace; and
e handling an external event as the activation of the appropriate Context.



Table 2: The MetaCore Primitives

primitive description

M causes the execution of Context, designated by the “is-meta-of” link. This
causes object execution to stop. Execution is then resumed by primitive
R.

R resumes execution of any Context that has been stopped by M.

CActive | returns the reference to Context that is currently running.

CBind associates Context with an interrupt. This takes an argument that in-

cludes a message to be delivered to an event handling object. When an
event is raised, the active Context is suspended and its associated Con-
text is immediately activated to execute the method of an event handling
object.

CUnbind | removes the association made by CBind.

These are atomic operations in object/metaobject separation. In the implementation, Meta-
Core has five primitives, as shown in Table 2. Although these primitives are implemented as
MetaCore methods, Context is implemented as a receiver of messages to handle those methods
by meta-level context management, as presented in the next subsection.

Before moving the discussion to meta-level context management, we introduce Context metaoh-
jects. A Context is a meta-level representation of an object’s activity and contains enough infor-
mation to continue the object’s execution. Context contains no descriptions of virtual memory,
but descriptions of an object’s thread of control, including its processor registers and execution
stacks. Context has a significant pointer, which represents the “is-meta-of” link between an
object and its metaspace. An object usually has no link to its metaspace. This is maintained
by a reflector metaobject. Context holds this link as a cache, i.e., two Contexts, one for an
object’s activity and the other for a reflector’s activity, are connected by this “is-meta-of” link.

3.3 Meta-level Context Management

Since MetaCore is the only metaobject constituting the metaspace for Contexts, we can cre-
ate Contexts within the address space of MetaCore. This, however, causes extra system call
instructions, as shown in Table 1. A possible solution to this problem is to allow an object to
transfer control to its metaspace without invoking of a MetaCore method. That is, Contexts
are moved out of MetaCore, and to be created in any address space. This means that MetaCore
is free from virtual memory management. Figure 3 shows a possible configuration of objects,
their Contexts, and MetaCore. There are three address spaces in the figure, address spaces #1
and #2, and an address space shared with all other objects. An arrow denotes the “is-meta-of”
link between two Contexts. For example, a metaspace of object #1 is represented by reflector
#1, and this relationship is depicted by an arrow from Context #1 to Context #3.

Here, when two Contexts are in the same address space, there is no need to issue a system
call instruction. However, when two Contexts are in different address spaces, a system call is
still needed to transfer control to the metaspace, as marked with the star in Figure 3. It is
complicated to implement a process marked with the star, which is divided into switching an
address space to another and locating Context representing the activity of the reflector (i.e., the
metaspace), because it needs the assistance of the virtual memory system. Also, since Meta-
Core is the only entity accessible from two Contexts, it has to provide a primitive to assist the
process.

In meta-level context management, we made one assumption to restrict Figure 3. That is,
two Contexts, one representing the activity of an object’s execution and the other representing
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the activity of a reflector’s execution, are assumed to be in the same protection domain. Thus,
a system call instruction has to be issued only when the processor’s execution mode is changed.
Also, this implies that an operation purging the contents of the processor’s cache and TLB
is independent of switching Context. As a result of the above discussion, the control path
between communicating two objects can be depicted in Figure 4. In primitive M, execution of

time line ——————————————— >
sender ———-—
sender's Context
reflector's Context

reflector -—9

reflector's Context

target's Context primitive a

target —_
primitive R

Figure 4: Control Path between Communicating Objects

the sender’s Context moves to execution of the reflector’s Context, representing the activity of
the sender’s metaspace. In primitive R, the reflector’s Context execution moves to the target.
During the processing of the gray area, it is possible to issue a system call instruction to change
the processor’s execution mode. That is, the latter half of processing primitive M or R may be
initiated by a system call instruction. Since this path is still long, we introduce a method cache
mechanism, which is denoted by the cache entry of Context, as in Figure 5. This entry is, in
this implementation, maintained by a reflector.

Figure 5 depicts Context’s structure in MIPS R3000 implementation, where the following
information is maintained.
status: is the processor status for this Context execution.
cpu: stores the contents of the processor registers.

10



stack: denotes a memory segment that is used for an execution stack.

mode: is the execution mode. Two modes, user and system, are used.

mask: represents the processor’s interrupt mask.

name: is an object identifier designating to this Context.

meta: is the “is-meta-of” link to Context, associated with the reflector of this object.

last: is a reference to the Context that most recently activated this Context.

state: represents the state of Context execution.

entry: denotes the object’s method table to be used by primitives M and R.

urgent: denotes a method that is immediately invoked when an external event occurs.

cache: denotes a method of handling a method cache that shortens a path between communi-
cating objects.

1: class Context {
2: protected:

3 CPUStatReg status;
4 CPURegisters cpu;

5: Temporary stack;
6: CPUMode mode;
7: longword mask;

8 SID name;
9: CName meta;
10: CName last;
11: mcState state;
12: EntryTablex* entry;
13: Entry urgent;
14: MethodCache* cache;
15: public: .....

16: };

Figure 5: Context Structure
Here, we discuss metahierarchy for an object’s execution, depicted in Figure 6. We intro-

thregd-e threaeo threaeto
coffrol %object #1 6ntrol # object #2 6ntrol # object #3

% reflector
/ (mReaItlme)

- ,\\\\Q\\\\\
2\ &

4 A

\_Isrne;mc/

MetaCore

Figure 6: Execution Metahierarchy for an Object’s Execution

duce the Exec metaobject. It can be shared by all metaspaces. We also introduce the Activity
metaob jects, which are a unit of scheduling in Exec and are used to manage an object’s execu-
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Table 3: The Methods of Metaobject Exec

method description
New creates a new Activity.
Delete destroys an existing Activity.
Run starts the execution of Activity that has the highest priority.
Stop suspends execution of the current Activity.
Top changes the position of Activity in the queue.
GetActive retrieves the identifier of the current Activity.
ChangeAttribute | changes the attribute of the specified Activity.

tion. That is, an object’s execution, a thread of control of a method execution, is represented
by an Activity metaobject at its meta-level. Even though we have already been given it by
Context, metaobjects Exec and Activity make it higher, and provide mechanisms for the re-
altime scheduling for objects. Thus, when a metaspace uses Exec, Activity is the meta-level
representation of an object’s execution, rather than Context. In the implementation, Activity
is defined as the data structure in the Fxec metaobject, but it can be accessed as if it were an
object. mCore the metaspace for Activity’s execution, is responsible for this transformation.
Also, Activity’s execution is represented by metaobject Context at its meta-level, i.e., mCore,
As described earlier, the metaspace for Context is the MetaCore.

Table 3 lists the operations provided by Exec. Metaobject Exec maintains the queue with
priority. Users of Exec utilize the methods in the table to manipulate Activity in the queue.
Exec itself has no scheduling policy, instead being merely a repository for Activity.

4 Evaluation

The results in this section have were obtained using Sony’s NEWS workstations, equipped with
a 20MHz MIPS R3000 processor, 20MHz R3010 floating point accelerator,1I6MB of physical
memory, and 64KB+64KB caches for data and instructions. When an object and its reflector
are assigned to the same protection domain, i.e., they are in the same address space and in the
same execution mode, no system call instructions are required. In MIPS R3000 implementation,
MetaCore is very small, as listed in Table 4. Also, it is designed such that there are no memory

Table 4: Size of MetaCore

text | initialized data | uninitialized data || total (bytes)
3808 224 3088 7120

allocation requirements inside MetaCore.
Table 5 shows the performance of the MetaCore primitives, which are invoked without using
syscall. The numbers in parenthesis are the results with the previous R3000 implementation.

Table 5: Cost of MetaCore Primitives (w/o syscall)

primitive cost (in psec)
M 8.7 (21)
R 8.8 (20)

Primitives CActive, CBind, and CUnbind are always used by syscall to invoke them. Table 6
shows the use of syscall. In the table, ExceptionHandler shows the time interval between
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Table 6: Cost of MetaCore Primitives (w/ syscall)

primitive cost (in usec)
M 12.1
R 12.6
CActive 4.8
CBind 5.9
CUnbind 5.6
ExceptionHandler 17.1

the occurrence of an interrupt and the starting of the handler. For this measurement, we used
the break instruction. The following are the measured results for some operations provided by
metaspaces (Table 7). In contrast to the previous implementation, thanks to meta-level context

Table 7: Cost of Operations Provided by Metaspaces

metaoperation cost (in pisec)
call/reply roundtrip (mCoresmCore w/o method cache) 111
call/reply roundtrip (mCore—s mCore w/ method cache) 12.4
call/reply roundtrip (mBase.. mBase) 193
call/reply roundtrip (mBase.. mSystem) 473
call (mZero) 106
reply (mZero) 110

management, these numbers are improved two to five times.

5 Related Work

Object/metaobject separation is a new way of constructing operating systems. In terms of
operating system structuring, many methods have been proposed, including layered structuring,
hierarchical structuring, policy/mechanism separation, micro-kernel structuring, object-based
structuring, open system structuring, and virtual machine structuring. Detailed discussions of
these methods are given in [Yokote et al. 91b].

Object/metaobject separation can subsume these structuring methods. In contrast to pol-
icy/mechanism separation [Levin et al. 75|, for example, we can implement an object as a
policy module, and a metaobject as a mechanism module. However, this correspondence of
object/metaobject separation to policy/mechanism separation does not correctly express the
difference. That is, in the sense that a metaobject represents an object’s behavior, it should
be considered as being a policy module. The major importance is that metaobjects maintain a
description of an object, and this is used to provide an optimal execution environment for the
object, where there is a possibility of replacing a mechanism if it is not able to provide such an
environment.

In contrast to micro-kernel structuring, object/metaobject separation does not divide the
system into two layers. It allows us to construct an hierarchical structure of objects and their
metaspaces. The ability to change a metaspace facilitates the implementation of object migra-
tion, as well as supporting mobile computers, embedded systems, and disconnected operations.
Especially, since object/metaobject separation is more tolerant of environmental change than
micro-kernel technology, it is advantageous in constructing robot control systems, as in [Brooks
86]. Further, the ability to provide an optimal execution environment for objects is an impor-
tant capability for massively parallel computers, because the role of each processing element
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depends on the application. In this way, object/metaobject separation addresses the open-ended
property.

Meta-level context management is comparable to the work on user-level thread management
done by [Anderson et al. 91], [Marsh et al. 91], and [Druschel et al. 92]. Unlike these systems,
however, threads are not managed by objects with kernel support. They are implemented as
Contexts and are created in a metaspace. The dominant feature of object/metaobject separation
is the independence of its objects from their metaspace.

6 Conclusion

Object/metaobject separation makes an object independent of its execution environment (or a
metaspace) and encourages an object’s metaspace mobility. The existing technologies, such as
micro-kernel and object-oriented ones, are not sufficient to support an operating system and its
kernel for an open system. We claim, in this paper, that an operating system should provide a
means of encouraging object/metaobject separation.

The Apertos operating system is an example of implementing object/metaob ject separation.
We propose new mechanisms to efficiently implement object/metaobject separation, because
the key to implementation is the interaction between an object and its metaspace. We devise
a new technique to enable efficient implementation, i.e., meta-level context management. With
this, we can reduce much of the overhead of interaction between an object and its metaspace.
In the ideal case, for example, there are no system call instructions and the control path can be
shortened between communication objects, maintaining object/metaobject separation.

Current status. The Apertos operating system is being implemented on Sony NEWS work-
stations, for which two processor architectures, Motorola’s MC68030 and MIPS’s R3000, are
available. Thanks to the MIPS architecture [Kane and Heinrich 92], one notable feature of
the implementation is that there is only one local kernel stack. This is also due to meta-level
context management and the structure of MetaCore.

Apertos is also being implemented on i486-based PC-compatible computers. The kernel part
of this implementation is already running and a simple GUI is available. The implementation
of Apertos described in this paper (MIPS and i486 implementations) are available to anyone
who is interested.
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