
1

Sun’s VFS and NFSSun’s VFS and NFS

A Typical Unix File TreeA Typical Unix File Tree

/

tmp usretc

File trees are built bygrafting
volumes from different volumes
or from network servers.

Each volume is a set of directories and files; a host’sfile tree is the set of
directories and files visible to processes on a given host.

bin vmunix

ls sh project users

packages

(volume root)

tex emacs

In Unix, the graft operation is
the privilegedmountsystem call,
and each volume is afilesystem.

mount point
mount (coveredDir, volume)

coveredDir:directory pathname
volume: device specifier or network volume

volume root contents become visible at pathnamecoveredDir

2

FilesystemsFilesystems

Each file volume (filesystem) has atype, determined by its
disk layout or the network protocol used to access it.

ufs (ffs), lfs, nfs, rfs, cdfs, etc.

Filesystems are administered independently.

Modern systems also include “logical” pseudo-filesystems in
the naming tree, accessible through the file syscalls.

procfs: the/proc filesystem allows access to process internals.

mfs: thememory file systemis a memory-based scratch store.

Processes access filesystems through common system calls.

VFS: the Filesystem SwitchVFS: the Filesystem Switch

syscall layer (file, uio, etc.)

user space

Virtual File System (VFS)network
protocol

stack
(TCP/IP) NFS FFS LFS etc.*FS etc.

device drivers

Sun Microsystems introduced thevirtual file systeminterface
in 1985 to accommodate diverse filesystem types cleanly.

VFS allows diversespecific file systemsto coexist in a file tree,
isolating all FS-dependencies in pluggable filesystem modules.

VFS was an internal kernel restructuring
with no effect on the syscall interface.

Incorporates object-oriented concepts:
a generic procedural interface with
multiple implementations.

Based on abstract objects with dynamic
method binding by type...in C.Other abstract interfaces in the kernel: device drivers,

file objects, executable files, memory objects.

3

VnodesVnodes

In the VFS framework, every file or directory in active use is
represented by avnodeobject in kernel memory.

syscall layer

NFS UFS

free vnodes

Each vnode has a standard
file attributesstruct.

Vnode operations are
macros that vector to
filesystem-specific
procedures.

Generic vnode points at
filesystem-specific struct
(e.g.,inode, rnode), seen
only by the filesystem.

Each specific file system
maintains acacheof its
resident vnodes.

Vnode Operations and AttributesVnode Operations and Attributes

directories only
vop_lookup (OUT vpp, name)
vop_create (OUT vpp, name, vattr)
vop_remove (vp, name)
vop_link (vp, name)
vop_rename (vp, name, tdvp, tvp, name)
vop_mkdir (OUT vpp, name, vattr)
vop_rmdir (vp, name)
vop_symlink (OUT vpp, name, vattr, contents)
vop_readdir (uio, cookie)
vop_readlink (uio)

files only
vop_getpages (page**, count, offset)
vop_putpages (page**, count, sync, offset)
vop_fsync ()

vnode attributes (vattr)
type (VREG, VDIR, VLNK, etc.)
mode (9+ bits of permissions)
nlink (hard link count)
owner user ID
owner group ID
filesystem ID
unique file ID
file size (bytes and blocks)
access time
modify time
generation number

generic operations
vop_getattr (vattr)
vop_setattr (vattr)
vhold()
vholdrele()

CPS 210

4

V/Inode CacheV/Inode Cache

HASH(fsid, fileid)
VFS free list head

Active vnodes arereference- counted
by the structures that hold pointers to
them.

- system open file table

- process current directory

- file system mount points

- etc.

Each specific file system maintains its
own hash of vnodes (BSD).

- specific FS handles initialization

- free list is maintained by VFS
vget(vp): reclaim cached inactive vnode from VFS free list
vref(vp): increment reference count on an active vnode
vrele(vp): release reference count on a vnode
vgone(vp): vnode is no longer valid (file is removed)

Continuum of Distributed SystemsContinuum of Distributed Systems

? ?

small
fast

big
slow

LAN
(NFS)

Global
Internet

Parallel
Architectures

CPS 221

high latency
low bandwidth

autonomous nodes
unreliable network

fear and distrust
independent failures

decentralized administration

Networks
CPS 214

Issues:
naming and sharing

performance and scale
resource management

low latency
high bandwidth
secure, reliable interconnect
no independent failures
coordinated resources

Multiprocessors clusters
(GMS)

fast network
trusting hosts
coordinated

slow network
untrusting hosts

autonomy

5

Network File System (NFS)Network File System (NFS)

syscall layer

UFS

NFS
server

VFS

VFS

NFS
client

UFS

syscall layer

client

user programs

network

server

NFS ProtocolNFS Protocol

NFS is a network protocol layered above TCP/IP.

• Original implementations (and most today) use UDP
datagram transport for low overhead.

Maximum IP datagram size was increased to match FS block
size, to allow send/receive of entire file blocks.

Some newer implementations use TCP as a transport.

• The NFS protocol is a set of message formats and types.

Client issues arequestmessage for a service operation.

Server performs requested operation and returns areply message
with status and (perhaps) requested data.

6

NFS VnodesNFS Vnodes

syscall layer

UFS

NFS
server

VFS

RPC/UDP

network

nfsnode

NFS client stubs

nfs_vnodeops

Thenfsnodeholds information
needed to interact with the server
to operate on the file.

struct nfsnode* np = VTONFS(vp);

The NFS protocol has an operation type for (almost) every
vnode operation, with similar arguments/results.

File HandlesFile Handles

Question: how does the client tell the server which file or
directory the operation applies to?

• Similarly, how does the server return the result of alookup?

More generally, how to pass a pointer or an object reference as an
argument/result of an RPC call?

In NFS, the reference is afile handleor fhandle, a 32-byte
token/ticket whose value is determined by the server.

• Includes all information needed to identify the file/object on
the server, and get a pointer to it quickly.

volume ID inode # generation #

7

Pathname TraversalPathname Traversal

When a pathname is passed as an argument to a system call,
the syscall layer must “convert it to a vnode”.

Pathname traversal is a sequence ofvop_lookupcalls to descend
the tree to the named file or directory.

open(“/tmp/zot”)
vp = get vnode for / (rootdir)
vp->vop_lookup(&cvp, “tmp”);
vp = cvp;
vp->vop_lookup(&cvp, “zot”);

Issues:
1. crossing mount points
2. obtaining root vnode (or current dir)
3. finding resident vnodes in memory
4. caching name->vnode translations
5. symbolic (soft) links
6. disk implementation of directories
7. locking/referencing to handle races

with name create and delete operations

From Servers to ServicesFrom Servers to Services

Are Web servers and RPC servers scalable? Available?
A single server process can only use one machine.

Upgrading the machine causes interruption of service.

If the process or machine fails, the service is no longer reachable.

We improve scalability and availability by replicating the
functional components of the service.

(May need to replicate data as well, but save that for later.)

• View theserviceas made up of a collection ofservers.

• Pick a convenient server: if it fails, find another (fail-over).

8

NFS: From Concept to ImplementationNFS: From Concept to Implementation

Now that we understand the basics, how do we make it work
in a real system?

• How do we make it fast?

Answer: caching, read-ahead, and write-behind.

• How do we make it reliable? What if a message is dropped?
What if the server crashes?

Answer: client retransmits request until it receives a response.

• How do we preserve file system semantics in the presence of
failures and/or sharing by multiple clients?

Answer: well, we don’t, at least not completely.

• What about security and access control?

NFS as a “Stateless” ServiceNFS as a “Stateless” Service

The NFS server maintains no transient information about its
clients; there is no state other than the file data on disk.

Makes failure recovery simple and efficient.

• no record of open files

• no server-maintained file offsets: read andwrite requests
must explicitly transmit the byte offset for the operation.

• no record of recently processed requests: retransmitted
requests may be executed more than once.

Requests are designed to beidempotentwhenever possible.

E.g., no append mode for writes, and no exclusive create.

9

Drawbacks of a Stateless ServiceDrawbacks of a Stateless Service

The stateless nature of NFS has compelling design
advantages (simplicity), but also some key drawbacks:

• Update operations are disk-limited because theymust be
committed synchronouslyat the server.

• NFS cannot (quite) preserve localsingle-copy semantics.

Files may be removed while they are open on the client.

Idempotent operations cannot capture full semantics of Unix FS.

• Retransmissions can lead to correctness problems and can
quickly saturate an overloaded server.

• Server keeps no record of blocks held by clients, so cache
consistency is problematic.

The Synchronous Write ProblemThe Synchronous Write Problem

Stateless NFS servers must commit each operation to stable
storage before responding to the client.

• Interferes with FS optimizations, e.g., clustering, LFS, and
disk write ordering (seek scheduling).

Damages bandwidth and scalability.

• Imposes disk access latency for each request.

Not so bad for a logged write; much worse for a complex
operation like an FFS file write.

The synchronous update problem occurs for any storage
service with reliable update (commit).

10

Speeding Up NFS WritesSpeeding Up NFS Writes

Interesting solutions to the synchronous write problem, used
in high-performance NFS servers:

• Delay the response until convenient for the server.

E.g., NFSwrite-gatheringoptimizations for clustered writes
(similar togroup commitin databases).[NFS V3 commit operation]

Relies on write-behind from NFS I/O daemons (iods).

• Throw hardware at it: non-volatile memory (NVRAM)

Battery-backed RAM or UPS (uninterruptible power supply).

Use as an operation log (Network Appliance WAFL)...

...or as a non-volatile disk write buffer (Legato).

• Replicate server and buffer in memory (e.g., MIT Harp).

The Retransmission ProblemThe Retransmission Problem

Sun RPC (and hence NFS) masks network errors by
retransmitting each request after a timeout.

• Handles dropped requests or dropped replies easily, but an
operation may be executed more than once.

Sun RPC hasexecute-at-least-oncesemantics, but we need
execute-at-most-once semantics for non-idempotent operations.

• Retransmissions can radically increase load on a slow server.

11

Solutions to the Retransmission ProblemSolutions to the Retransmission Problem

1. Use TCP or some other transport protocol that produces
reliable, in-order delivery.

higher overhead, overkill

2. Implement an execute-at-most once RPC transport.
sequence numbers and timestamps

3. Keep aretransmission cacheon the server.
Remember the most recent request IDs and their results, and just

resend the result....does this violate statelessness?

4. Hope for the best and smooth over non-idempotent requests.
Map ENOENT and EEXIST to ESUCCESS.

File Cache ConsistencyFile Cache Consistency

Caching is a key technique in distributed systems.
Thecache consistency problem: cached data may becomestaleif

cached data is updated elsewhere in the network.

Solutions:

• Timestamp invalidation(NFS).

Timestamp each cache entry, and periodically query the server:
“has this file changed since timet?”; invalidate cache if stale.

• Callback invalidation(AFS).

Request notification (callback) from the server if the file
changes; invalidate cache on callback.

• Leases(NQ-NFS)[Gray&Cheriton89]

