
The Synergy Between Non-blocking Synchronization and Operating System
Structure

Michael Greenwald and David Cheriton
�

Computer Science Department
Stanford University

Stanford, CA 94305-9040

Abstract

Non-blocking synchronization has significant advantages over
blocking synchronization: however, it has not been used to a
significant degree in practice. We designed and implemented
a multiprocessor operating system kernel and run-time library
for high-performance, reliability and modularity. We used non-
blocking synchronization, not because it was an objective in
itself, but because it became the approach of choice. It was
an attractive approach because of the synergy between other
structuring techniques we used to achieve our primary goals
and the benefits of non-blocking synchronization.

This paper describes this synergy: the structuring techniques
we used which facilitated non-blocking synchronization and
our experience with this implementation.

1 Introduction

We chose to use non-blocking synchronization in the de-
sign and implementation of the Cache Kernel [7] oper-
ating system kernel and supporting libraries for several
reasons. First, non-blocking synchronization allows syn-
chronized code to be executed in an (asynchronous) sig-
nal handler without danger of deadlock. For instance,
an asynchronous RPC handler (as described in [25]) can
directly store a string into a synchronized data structure
such as a hash table even though it may be interrupting
another thread updating the same table. With locking,
the signal handler could deadlock with this other thread.

Second, non-blocking synchronization minimizes in-
terference between process scheduling and synchroniza-
tion. For example, the highest priority process can access
a synchronized data structure without being delayed or
blocked by a lower priority process. In contrast, with
blocking synchronization, a low priority process hold-
ing a lock can delay a higher priority process, effectively

���
michaelg, cheriton � @cs.stanford.edu. This work

was sponsored in part by ARPA under US Army contract DABT63-91-
K-0001. Michael Greenwald was supported by a Rockwell Fellowship.

defeating the process scheduling. Blocking synchro-
nization can also cause one process to be delayed by
another lockholding process that has encountered a page
fault or a cache miss. The delay here can be hundreds of
thousands of cycles in the case of a page fault. This type
of interference is particularly unacceptable in an OS like
the Cache Kernel where real-time threads are supported
and page faults (for non-real-time threads) are handled
at the library level. Non-blocking synchronization also
minimizes the formation of convoys which arise because
several processes are queued up waiting while a single
process holding a lock gets delayed.

Finally, non-blocking synchronization provides greater
insulationfrom failures such as fail-stopprocess(or)s fail-
ing or aborting and leaving inconsistent data structures.
Non-blocking techniques allow only a small window of
inconsistency, namely during the atomic compare-and-
swap sequence itself. In contrast, with lock-based syn-
chronization the window of inconsistency spans the entire
locked critical section. These larger critical sections and
complex locking protocols also introduce the danger of
deadlock or failure to release locks on certain code paths.

There is a strong synergy between non-blocking syn-
chronization and the design and implementation of the
Cache Kernel for performance, modularity and reliabil-
ity. First, signals are the only kernel-supported form
of notification, allowing a simple, efficient kernel im-
plementation compared to more complex kernel message
primitives, such as those used in V [6]. Class libraries im-
plement higher-level communication like RPC in terms of
signals and shared memory regions [25]. Non-blocking
synchronization allows efficient library implementation
without the overhead of disabling and enabling signals
as part of access and without needing to carefully restrict
the code executed by signal handlers.

Second, we simplified the kernel and allows spe-
cialization of these facilities using the C++ inheritance
mechanism by implementating of most operating sys-
tem mechanisms at the class library level, particularly



the object-oriented RPC system [25]. Non-blocking syn-
chronization allows the class library level to be tolerant of
user threads being terminated (fail-stopped) in the mid-
dle of performing some system library function such as
(re)scheduling or handling a page fault.

Finally, the isolation of synchronization from schedul-
ing and thread deletion provided by non-blocking syn-
chronization and the modularityof separate class libraries
and user-level implementation of services leads to a more
modular and reliable system design than seems feasible
by using conventional approaches.

This synergy between non-blocking synchronization
and good system design and implementation carries for-
ward in the more detailed aspects of the Cache Kernel
implementation. In this paper, we describe aspects of
this synergy in some detail and our experience to date.

The main techniques we use for modularity,
performance and reliability are atomic DCAS(or
Double-Compare-and-Swap), type-stable memory
management (TSM), and contention-minimizing data
structures (CMDS).

DCAS (discussed in detail in Section 5) is defined in
Figure 1. That is, DCAS atomically updates locations
addr1 and addr2 to values new1 and new2 respec-
tively if addr1 holds value old1 and addr2 holds
old2 when the operation is invoked.

The next section describes type-stable memory man-
agement, which facilitates implementing non-blocking
synchronization as well as providing several independent
benefits to the software structure. Section 3 describes the
contention-minimizing data structures which have bene-
fits in performance and reliability for lock-based as well
as non-blockingsynchronization. Section 4 describes our
approach to minimizing the window of inconsistency and
the systems benefits of doing so. Section 5 describes
the non-blocking synchronization implementation in fur-
ther detail with comparison to a blocking implementa-
tion. Section 6 describes the non-blocking synchroniza-
tion primitives that we assumed for our approach and a
potential hardware implementation. Section 7 describes
the performance of our implementation using simulation
to show its behavior under high contention. Section 8
describes how our effort relates to previous and current
work in this area. We close with a summary of our con-
clusions and directions for future work.

2 Type-Stable Memory Management
(TSM)

Type-stable memory management (TSM) refers to the
management of memory allocation and reclamation so
that an allocated portion of memory, a descriptor, does
not change type within some time bound

����������	�

. This is a

int DCAS(int *addr1, int *addr2,
int old1, int old2,
int new1, int new2)

{
<begin atomic>
if ((*addr1 == old1) && (*addr2 == old2)) {

*addr1 = new1; *addr2 = new2;
return(TRUE);

} else {
return(FALSE);

}
<end atomic>
}

Figure 1: Pseudo-code definition of DCAS
(Double-Compare-and-Swap)

fancy name for an extension of an old idea. For example,
the process descriptors in many operating systems are
statically allocated at system initialization and are thus
type-stable for the lifetime of the system execution.

Our notion of TSM incorporates three basic extensions
to this conventional type of implementation. First, a
descriptor remains a valid instance of the type even when
it is not active, i.e. on the free list. Second, TSM allows
multiple memory allocation pools for the same type. For
example, there can be a pool of thread descriptors per
cluster of processors on a large-scale multiprocessor to
minimize contention between clusters. Finally, the type
of a portion of memory can change over time, but only
as long as it is type-stable over some time

����������	�

. More

specifically, a descriptor has to be inactive for at least
���������	�


before it can be reallocated as a different type1.
However, for simplicity, we assume an infinite

���������	�

for

this discussion.
TSM simplifies the implementation of non-blocking

synchronization algorithms. That is, because a descriptor
of type T1 is type-stable, a pointer of type T1 * to
the descriptor cannot end up pointing to a descriptor of
another type as a result of this area of memory being freed
and reallocated as type T2.

Consider, for example, the code shown in Figure 2 to
do a non-blocking deletion from a linked list2.

The delete operation searches down a linked list of
descriptors to find the desired element or detect the end of

1An exampleof a TSM implementation is a collection of descriptors
that are stored in a set of page frames which are allocated and released
over time. When more descriptors are required, additional page frames
can be allocated from the general pool and when the number of descrip-
tors falls, the descriptors may be consolidated into a smaller number
of pages and the excessive page frames returned to the general pool.
However, the release of page frames to the general pool must be delayed
sufficiently to ensure the type-stability property. This delay provides
a useful hysteresis to the movement of pages between this descriptor
collection and the general page pool.

2The list is initialized with a dummy node at the head, thus deletion
of the first element works correctly.



/* Delete elt */
do {
retry:
backoffIfNeeded();
version = list->version;

for (p = list->head;
(p->next != elt);
p = p->next) {

if (p == NULL) { /* Not found */
if (version != list->version)
{ goto retry; } /* Changed */

return NULL; /* Really not found */
}

}
} while(!DCAS(&(list->version), &(p->next),

version, elt,
version+1, elt->next))

Figure 2: Deletion from the middle of list, protected by
DCAS and version number.

the list. If the element is found, the element is atomically
deleted from the list by the DCAS operation. The DCAS
succeeds only if the list has not been modified since the
delete operation started, as determined from the version
field.

The code only checks for conflicts once it reaches the
desired element or the end of the list. The descriptors are
TSM so each pointer is guaranteed to point to a descriptor
of this type. Without TSM, the link pointer, p, may point
to a descriptor that has been deleted and reallocated as a
different type. This type error can cause a random bit-
field to be interpreted as a pointer, and cause the search to
perform incorrectly, raise an exception due to unaligned
access, or read a device register. TSM is a simpler and
more efficient way of ensuring this type safety than other
techniques we are aware of that prevent reallocation (such
as automatic garbage collection mechanisms or reference
counts), or that detect potential reallocation (such as per-
list-element version numbers).

Besides these benefits to non-blocking synchroniza-
tion, TSM has several important advantages in the con-
struction of modular, reliable, high-performance oper-
ating systems. First, TSM is efficient because a type-
specific memory allocator can normally allocate an in-
stance of the type faster than a general-purpose allocator
can. For example, allocation of a new thread from a
free list of (fixed-size) thread descriptors is a simple de-
queue operation whereas a general-purpose allocator like
malloc may have to do a search and subdivision of its
memory resources. The class-specific new and delete
operators of C++ support a clean source code represen-
tation of TSM. This allocation can be made even more
efficient with many types because a free (or inactive) de-
scriptor is already an instance of this type, and so may
require less initialization on allocation than a random

portion of memory.
Second, TSM aids reliability because it is easier to au-

dit the memory allocation, locating all the descriptors of a
given type and ensuring that pointers that are supposed to
point to descriptors of a given type actually do so. With
fixed-size descriptors, TSM also avoids fragmentation
of memory that arises with general-purpose allocators.
Fragmentation can cause failure as well as poor perfor-
mance. Relatedly, TSM makes it easier to regulate the
impact of one type of descriptor on the overall system
resources. For example, with a collection of descriptors
that are allocated dynamically using the page frame ap-
proach described above, the number of pages dedicated to
this type can be controlled to avoid exhausting the mem-
ory available for other uses, both from overallocation and
from fragmentation of memory.

TSM also minimizes the complexity of implementing
the caching model [7] of descriptors in the operating sys-
tem kernel. In this approach, the number of descriptors
of a given type is limited but an allocation never fails. In-
stead, as in a cache, a descriptor is made available by its
dirty data being written back to the higher-level system
management and then reused to satisfy the new allocation
request. This mechanism relies on limiting the number of
descriptors, being able to locate an allocated descriptor
to reclaim, and being able to determine the dependencies
on these descriptors. TSM simplifies the code in each of
these cases.

TSM also allows a modular implementation. From
an object-oriented programming standpoint, there can
be a base class descriptor manager class that is special-
ized to each type of descriptor. For example, there is a
CacheKernelObjMan class in our operating system
kernel that provides the basic TSM allocation mecha-
nism, which is specialized by C++ derivation to imple-
mentThread,AddressSpaceKernel and MemMap
types as well as several other types.

3 Data Structures that Minimize Con-
tention

The Cache Kernel was also designed and implemented to
minimize both logical and physical contention to provide
for efficient non-blocking synchronization. By logical
contention, we mean contention for access to data struc-
tures that need to be controlled to maintain the consis-
tency and semantics of these data structures. By physical
contention, we mean the contention for access to shared
memory that needs to be controlled to maintain the con-
sistency and semantics of the memory system3.

3Physical contention is separate from logical contention because
one can have logical contention without physical contention as well as
vice versa, so called false sharing. For example, if two shared vari-



Minimizing logical contention with non-blocking syn-
chronization minimizes the overhead of conflicting oper-
ations failing and being retried. It also avoids the com-
plexity of complex backoff mechanisms as part of the
retry.

Most of our techniques for contention minimization
are well-known. For example, one aspect of contention
minimization is replicating data structures for each pro-
cessor. In particular, there are per-processor ready and
delay queues in the Cache Kernel, so contention on these
structures is limited to signal/interrupthandlers and man-
agement operations to load balance, etc. being executed
by a separate processor.

Similarly, there is a signal delivery cache per proces-
sor which allows a significant number of signals to be
delivered by a processor without accessing the shared
signal mapping data structure, which cannot be made per-
processor without replicating the entire structure. This
per-processor “cache” approach is similar to that provided
by a per-processor TLB for address translation. The TLB
reduces access to the real virtual address space mapping
structure, which is necessarily shared among threads in
the address space.

Contention on a data structure is also reduced in some
cases by structuring it as a multi-level hierarchy. For
example, a list that is searched frequently may be revised
to be a hash table with a version number or lock per
bucket. Then, searches and updates are localized to a
single bucket portion of the list, reducing the conflict
with other operations, assuming they hash to different
buckets. The upper levels of the hierarchy are read-only
or read-mostly: descriptors are only added at the leaves.

Physical contention is also reduced by using cache-
aligned descriptors. TSM with its restricted allocation
of descriptors can also reduce the number of pages ref-
erenced as part of scan and search operations, reducing
the TLB miss rate, another source of physical contention.
Finally, in this vein, commonly updated fields are placed
contiguously and aligned to hopefully place them in the
same cache line, thereby making the updates more effi-
cient.

The spatial locality of data access achieved by these
techniques provides significant benefit for synchroniza-
tion, whether non-blocking or conventional locks. This
spatial locality also minimizes the consistency overhead
when the system is running across multiple processors,
with each caching portions of this shared data. In gen-
eral, our experience (e.g. [10]) suggests that it is bet-
ter to (re)structure the data structures to reduce con-
tention rather than attempt to improve the behavior of

able can reside in the same cache line unit so there can be physical
contention without logical contention if two processor attempt to up-
date the variables simultaneously, each processor updating a separate
variable.

synchronization techniques under high contention. Low-
contention algorithms are simpler and thus easier to get
right, and faster as long as contention is actually low.

4 Minimizing the Window of Inconsistency

The Cache Kernel was also structured to minimize the
window in which a data structure was inconsistent. This
provides temporal locality to a critical section. Again,
we use familiar techniques. The basic pattern is to read
all the values, compute the new values to be written, and
then write these new values all at once after verifying
that the values read have not changed. Since a structure
is generally inconsistent from the time of the first write
to the point that the last write completes, removing the
computation from this phase minimizes the window of
inconsistency. To minimize the cost of verifying that the
read values have not changed, we use a version number
that covers the data structure and is updated whenever the
data structure changes. The use of a version number also
avoids keeping track of the actual location read as part of
the operation.

The window of inconsistency is also minimized by
structuring to minimize physical contention as part of
data structure access.

Physical contention increases the time for a processor
to perform an operation because it increases the effective
memory access time.

These techniques allow efficient non-blocking syn-
chronization. In particular, an update typicallyconsists of
a DCAS operation that updates the version number plus
one other location, with the version number ensuring that
the data structure has not been changed by another con-
current update. That is, the window of inconsistency is
reduced to the execution of the DCAS operation itself.

These techniques have other benefits as well. In par-
ticular, the reduced window of inconsistency reduces the
probability of a failure, such as a thread termination, cor-
rupting the system data structures. They also reduce the
complexity of gettingcritical section code rightbecause it
is shorter with fewer separate control paths through it and
therefore easier to test. Some of this structuring would be
beneficial, if not required, for an implementation using
lock-based synchronization because it reduces lock hold
time, thereby further reducing contention.

5 Non-Blocking Synchronization Imple-
mentation

With the structuring of the Cache Kernel and supporting
class libraries described above, non-blocking synchro-
nization is relatively simple to implement. Most data



structures are collections of fixed-size descriptors. Sev-
eral collections are queues for service. For example,
thread descriptors are queued in the ready queue and a
delay queue of their associated processor. Other collec-
tions are lookup or search structures such as a hash table
with linked list buckets. For example, we organize page
descriptors into a lookupstructure per address space, sup-
porting virtual-to-physical mapping for the address space.

5.1 The Base Approach
The non-blocking synchronization for these structures
follows a common base structure. There is a version num-
ber per list. The DCAS primitive is used to atomically
perform a write to a descriptor in a list and increment the
version number, checking that the previous value of both
has not been changed by a conflicting access to the list.
Figure 2 illustrated this structure for deleting a descrip-
tor from a list, where the single write to the descriptor
was to change the link field of the predecessor descrip-
tor. Inserting a new descriptor

�
entails initializing

�
,

locating the descriptor in the linked list after which to
insert

�
, writing the

�
’s link field to point to the next

descriptor, and then performing the DCAS to write the
link field of this prior descriptor to

�
and to increment the

version, checking both locations for contention as part of
the update.

Dequeuing a descriptor from a TSM free list is a de-
generate case of deletion because the dequeue always
takes place from the head. It is possible to optimize this
case and use a single CAS to dequeue without a version
number. However, with efficient DCAS support, it is
attractive to use DCAS with a version number to allow
the version number to count the number of allocations
that take place. (As another special case, an operation
requiring at most two locations for the reads and writes
can be updated directly using DCAS. We have used this
approach with array-based stacks and FIFO queues.)

Some operations that involve multiple writes to the
same descriptor can be performed by creating a dupli-
cate of this descriptor, performing the modifications and
then atomically replacing the old descriptor by the new
descriptor if the list has not changed since the duplicate
descriptor was created. This approach is a variant of
Herlihy’s general methodology [13] which can convert
a sequential implementation of any data structure into a
wait-free, concurrent one. However, we use DCAS to
ensure atomicity with respect to the entire data structure
(the scope of the version number) even though we are
only copying a single descriptor4. As a variant of this

4The basic Herlihy approach involves copying the entire data struc-
ture, modifying the copy, and then atomically replacing the old copy
with the new copy using CAS, and retrying the entire copy and mod-
ifying if there is a conflict. Our approach reduces the allocation and
copy cost to a single descriptor rather than the entire data structure but
requires DCAS.

approach, the code can duplicate just a portion of the de-
scriptor, update it and use DCAS to insert it in place of
the original while updating a version number. If a thread
fails before completing the insertion, we rely on a TSM-
based audit to reclaim the partially initialized descriptor
after it is unclaimed for

� �������	�

time.

As a further optimization, some data structures allow
a descriptor to be removed, modified and then reinserted
as long as the deletion and the reinsertion are each done
atomically. This optimization saves the cost of allocating
and freeing a new descriptor compared to the previous ap-
proach. This approach requires that other operations can
tolerate the inconsistency of this descriptor not being in
the list for some period of time. For example, the Cache
Kernel signal delivery relies on a list of threads to which a
signal should be delivered. A thread fails to get the signal
if it is not in the list at the time a signal is generated. How-
ever, we defined signal delivery to be best-effort because
there are (other) reasons for signal drop so having signal
delivery fail to a thread during an update is not a viola-
tion of the signal delivery semantics. Programming the
higher-level software with best-effort signal delivery has
required incorporating timeout and retry mechanisms but
these are required for distributed operation in any case and
do not add significant overhead [25]. These techniques,
related to the transport-layer in network protocols, also
make the system more resilient to faults.

Note that just having a search mechanism retry a search
when it fails in conjunction with this approach can lead to
deadlock. For example, if a signal handler that attempts
to access descriptor

�
, retrying until successful, is called

on the stack of a thread that has removed
�

to perform
an update, the signal handler effectively deadlocks with
the thread.

5.2 Dealing with Multiple Lists
A descriptor that is supposed to be on multiple lists simul-
taneously complicates these procedures. So far, we have
found it feasible to program so that a descriptor can be in
a subset of the lists, and inserted or deleted in each list
atomically as separate operations. In particular, all the
data structures that allow a descriptor to be absent from
a list allow the descriptor to be inserted incrementally.

Overall, the major Cache Kernel [7] data structures are
synchronized in a straightforward manner. Threads are
in two linked lists: the ready queue and the delay queue.
Descriptor free lists are operated as stacks, making alloca-
tion and deallocation simple and inexpensive. The virtual
to physical page maps are stored in a tree of depth 3 with
widths of 128, 128, and 64 respectively. Although the
128 immediate descendants of the root are never deleted,
sub-trees below them can be unloaded. Modifications
to a map on level 3 are synchronized using DCAS with
its parent’s version number to make sure that the entire



subtree has not been modified in conflict with this up-
date. Finally, the Cache Kernel maintains a “dependency
map” that records dependencies between objects, includ-
ing physical to virtual mappings. It is implemented as
a fixed-size hash table with linked lists in each bucket.
The signal mapping cache structure, (an optimization for
signal delivery to active threads), is also a direct mapped
hash table with linked lists in each bucket. The majority
of uses of single CAS are for audit and counters.

Synchronization of more complex data structures than
we have encountered can be handled by each operation
allocating, initializing and enqueuing a “message” for a
server process that serially executes the requested opera-
tions. Read-only operations can still proceed as before,
relying on a version number incremented by the server
process. Moreover, the server process can run at high
priority, and include code to back out of an operation on
a page fault and therefore not really block the operation
anymore than if the operation was executed directly by
the requesting process. The server process can also be
carefully protected against failure so the data structure is
protected against fail-stop behavior of a random applica-
tion thread, which may be destroyed by the application.

This approach was used by Pu and Massalin [17]. For
example, a general-purpose memory page allocator can
be synchronized in this manner, relying on a TSM mem-
ory pool to minimize the access to the general allocator.
However, in our code to date, the only case of queueing
messages for a server module arises with device I/O. This
structure avoids waiting for the device I/O to complete
and is not motivated by synchronization issues.

Other work has investigated other alternatives or op-
timizations of this approach, in which helper functions
are executed by a new thread if there is work left to
complete or rollback by a previous thread accessing this
data structure. For example, Israeli et al. [16] describe
a non-blocking heap implemented using 2-word LL/SC
along these lines, performing multiple updates as multi-
ple distinct operations. However, to date, we have not
needed to employ these so-called helper techniques and
therefore cannot comment on their actual practicality or
utility. Moreover, it seems questionable from a reliability
standpoint to have threads from separate address spaces
sharing access to complex data structures. These data
structures are also more difficult to program and to main-
tain and often provide marginal performance benefits in
practice, particularly when synchronization overhead is
taken into account. Their asymptotic performance bene-
fits are often not realized at the scale of typical operating
system data structures.

5.3 Comparison to Blocking Synchroniza-
tion

Much of the structuring we have described would be
needed, or at least beneficial, even if the software used
blocking synchronization. For instance, TSM has a
strong set of benefits as well as contributing to the other
techniques for minimizing contention and reducing the
window of inconsistency.

We have found that the programming complexity of
non-blocking synchronization is similar to conventional
blocking synchronization. This differs from the experi-
ence of programmers using CAS-only systems. DCAS
plays a significant part in the complexity reduction. Using
the crude metric of lines of code, a CAS implementation
(Valois) of concurrent insertion/deletion from a linked
list requires 110 lines, while the corresponding DCAS
implementation requires 38 (a non-concurrent DCAS im-
plementation takes 25). The CAS-only implementation
of a FIFO queue described in [18] requires 37 lines, our
DCAS version only 24. The DCAS versions are corre-
spondingly simpler to understand and to informally verify
as correct. In many cases, using DCAS, the translation
from a well-understood blocking implementation to a
non-blocking one is straightforward. In the simple case
described in Figure 2, the initial read of the version num-
ber replaces acquiring the lock and the DCAS replaces
releasing the lock.

In fact, version numbers are analogous to locks in many
ways. A version number has a scope over some shared
data structure and controls contention on that data struc-
ture just like a lock. The scope of the version number
should be chosen so that the degree of concurrency is
balanced by the synchronization costs. (The degree of
concurrency is usually bounded by memory contention
concerns in any case). Deciding the scope of a version
number is similar to deciding on the granularity of lock-
ing: the finer the granularity the more concurrency but the
higher the costs incurred. However, a version number is
only modified if the data structure is modified whereas a
lock is always changed. Given the frequency of read-only
operations and the costs of writeback of dirty cache lines,
using read-only synchronization for read-only operations
is attractive. Finally, version numbers count the number
of times that a data structure is modified over time, a
useful and sometimes necessary statistic.

Finally, the overall system complexity using blocking
synchronization appears to be higher, given the code re-
quired to get around the problems it introduces compared
to non-blocking synchronization. In particular, special
coding is required for signal handlers to avoid deadlock.
Special mechanisms in the thread scheduler are required
to avoid the priority inversion that locks can produce.
And, additional code complexity is required to achieve
reliable operation when a thread can be terminated at a



random time. For example, some operations may have to
be implemented in a separate server process.

A primary concern with non-blocking synchroniza-
tion is excessive retries because of contending operations.
However, our structuring has reduced the probability of
contention and the conditional load mechanism described
in the next section can be used to achieve behavior similar
to lock-based synchronization.

6 Non-blocking Synchronization Primi-
tives

Our approach assumes an efficient implementation
of DCAS functionality. In this section, we
briefly outline an instruction set extension to the
load-linked/store-conditional) instructions
to support DCAS. (A software implementation is dis-
cussed in Section 6.1.) With a processor support-
ing load-linked (LL) and store-conditional
(SC) instructions, add two instructions:

1. LLP (load-linked-pipelined): load and link to a sec-
ond address after a LL. This load is linked to the
following SCP.

2. SCP (store-conditional-pipelined): Store to the
specified location provided that no modifications
have been made to either of the memory cells des-
ignated by either of the most recent LL and LLP
instructions and these cache lines have not been in-
validated in the cache of the processor performing
the SCP.

If a LLP/SCP sequence nested within an LL/SC pair fails,
the outer LL/SC pair fails too.

DCAS is then implemented by the instruction sequence
shown in Figure 3 (using R4000 instructions in addition to
the LL/SC(P) instructions). The LL and LLP instructions
in lines 1 and 2 “link” the loads with the respective
stores issued by the following SC and SCP instructions.
Lines 3 and 4 verify that (T0) and (T1) contain V0
and V1, respectively. The SCP and SC in lines 5 and 6
are conditional. They will not issue the stores unless
(T0) and (T1) have been unchanged since lines 1 and
2. This guarantees that the results of CAS in lines 3 and
4 are still valid at line 6, or else the SC fails. Further, the
store issued by a successful SCP is buffered pending
a successful SC. Thus, SC in line 6 writes U1 and U0 to
(T1) and (T0) atomically with the comparison to V0
and V15.

5Given data structures that are protected by a version number, te
DCAS is actually a Compare-And-Double-Swap (CADS) — the
second value cannot have changed if the version number is unchanged.
In these cases a minor optimization is possible and line 4 can be deleted.

/*
* If (T0) == V0, and (T1) == V1, then
* atomically store U0 and U1 in T0 and T1
*/
DCAS(T0, T1, V0, V1, U0, U1)

;; Get contents of addresses in registers.
1 LL T3, (T1)
2 LLP T2, (T0)

;; Compare to V0 and V1. If unequal, fail.
3 BNE T2, V0, FAIL
4 BNE T3, V1, FAIL

;; If equal, and unchanged since LOAD,
;; store new values

5 SCP U0, (T0)
6 SC U1, (T1)

;; Success of SC and SCP is stored in U1
BLEZ U1, FAIL
...

FAIL:

Figure 3: DCAS Implementation using LL/SC and LLP/SCP.
Success or failure of SC (and thus of the DCAS operation) is
returned in U1 or whatever general register holds the argument
toSC. 1 denotes success,0 failure. If the next instruction tries to
read U1, the hardware interlocks (as it already does for LL/SC)
if the result of SC is not already in U1.

We have worked out a detailed design for the imple-
mentation of these two instructions in a RISC proces-
sor such as the R4000 but the description is omitted for
brevity.

6.1 Software Implementation of DCAS
DCAS functionality can be implemented in software us-
ing a technique introduced by Bershad [4]. DCAS is im-
plemented using a lock known to the operating system.
If a process holding this locks is delayed by a context
switch, the operating system rolls back the process out of
the DCAS procedure and releases the lock. The rollback
procedure is relatively simple because the DCAS imple-
mentation is simple and known to the operating system.
Moreover, the probability of a context switch in the mid-
dle of the DCAS procedure is low because it is so short,
typically a few instructions. Thus, the rollback cost is
incurred infrequently.

This technique can be used more generally to imple-
ment other primitives such as n-location CAS. We focus
on DCAS implementation because the primary relation to
our work is offering a software implementation of DCAS
as an alternative to our proposed hardware support. It
also seems simpler to just implement rollback for DCAS
compared to more general primitives.

This approach has the key advantage of not requiring
hardware extensions over the facilities in existing sys-
tems. Moreover, its performance may be comparable to
our hardware extensions, especially on single processors
or small-scale multiprocessors. Further measurements
are required here. However, there are a few concerns.



First, there is the cost of locking. The straight-forward
implementation requires the DCAS procedure to access a
common global lock from all processes. In a multi-level
memory with locks in memory, the memory contention
between processors for this lock can be significant. For
example, the data structure may be in a shared segment
that is mapped in by two independent processes. If the
locks are associated with each DCAS instance, there is
more cost and complexity to designate the locks and crit-
ical section to the operating system and to implement the
rollback. The locking and unlocking also modifies the
cache line containing the lock, further increasing the cost
of this operation because writeback is required.

Second, Bershad’s approach requires rereading the two
locations from memory as well as an extra read and write
to set the lock and write to clear the lock.

Third, on multiprocessors, care must be used by readers
of shared data structures if they want to support unsyn-
chronized reads. Without depending on the lock, read-
ers can see intermediate states of the DCAS, and read
tentative values that are part of a DCAS that fails. Re-
quiring synchronization for reads significantly increases
contention on the global lock. Note that in many cases
TSM reduces the danger of unsynchronized reads because
the reads cannot cause type errors. Writes are protected
by the global lock, and the final DCAS will detect that
the unsynchronized reads were suspect, and fail. Sys-
tems that provide hardware DCAS require no additional
read synchronization beyond that performed automati-
cally by the memory system. Further experience and
measurements are required to determine whether this is a
significant issue on real systems.

Finally, the Bershad mechanism seems harder to test
under all conditions. For instance, it is possible that one of
the write operations that the rollback needs to undo is to an
area of memory that has been paged out or that one of the
addresses is illegal. The system also needs to ensure that
a thread is rolled back out of any DCAS critical section if
it is terminated. We believe our hardware implementation
is simpler to verify and naturally operates on top of the
virtual memory management of the system and on top of
directly accessible physical memory at the lowest level
of the system software. It is of concern that a minor
change to the software mechanisms in Bershad’s scheme
could result in very subtle errors in execution that could
go undetected in a system for a long period of time.

6.2 Hardware Contention Control
As a further extension, a processor can provide a condi-
tional load instructionorCload. The Cload instruction
is a load instruction that succeeds only if the location be-
ing loaded does not have an advisory lock set on it, setting
the advisory lock when it does succeed.

With Cload available, the version number is loaded

initially using Cload rather than a normal load. If the
Cload operation fails, the thread waits and retries, up
to some maximum, and then uses the normal load in-
struction and proceeds. This waiting avoids performing
the update concurrently with another process updating
the same data structure. It also prevents potential starva-
tion when one operation takes significantly longer than
other operations, causing these other frequently occuring
operations to perpetually abort the former. It appears par-
ticularly beneficial in large-scale shared memory systems
where the time to complete a DCAS-governed operation
can be significantly extended by wait times on mem-
ory because of contention, increasing the exposure time
for another process to perform an interfering operation.
Memory references that miss can take 100 times as long,
or more, because of contention misses. Without

�

Cload, a
process can significantly delay the execution of another
process by faulting in the data being used by the other
process and possibly causing its DCAS to fail as well.

The cost of usingCload in the common case is simply
testing whether the Cload succeeded, given that a load
of the version number is required in any case.
Cload can be implemented using the cache-

based advisory locking mechanism implemented in
ParaDiGM [8]. Briefly, the processor advises the cache
controller that a particular cache line is “locked”. Normal
loads and stores ignore the lock bit, but the Cload
instruction tests and sets the cache-level lock for a given
cache line or else fails if it is already set. A store operation
clears the bit. T