The Synergy Between Non-blocking Synchronization and Operating System
Structure

Michagl Greenwald and David Cheriton *
Computer Science Department
Sanford University
Sanford, CA 94305-9040

Abstract

Non-blocking synchronization has significant advantages over
blocking synchronization: however, it has not been used to a
significant degree in practice. We desighed and implemented
a multiprocessor operating system kernel and run-time library
for high-performance, reliability and modularity. We used non-
blocking synchronization, not because it was an objective in
itself, but because it became the approach of choice. It was
an attractive approach because of the synergy between other
structuring techniques we used to achieve our primary goals
and the benefits of non-blocking synchronization.

This paper describesthissynergy: the structuring techniques
we used which facilitated non-blocking synchronization and
our experience with this implementation.

1 Introduction

We chose to use non-blocking synchronizationin the de-
sign and implementation of the Cache Kernel [7] oper-
ating system kernel and supporting libraries for several
reasons. First, non-blocking synchronization alows syn-
chronized code to be executed in an (asynchronous) sig-
nal handler without danger of deadlock. For instance,
an asynchronous RPC handler (as described in [25]) can
directly store a string into a synchronized data structure
such as a hash table even though it may be interrupting
another thread updating the same table. With locking,
the signal handler could deadlock with this other thread.

Second, non-blocking synchronization minimizes in-
terference between process scheduling and synchroniza-
tion. For exampl e, the highest priority process can access
a synchronized data structure without being delayed or
blocked by a lower priority process. In contrast, with
blocking synchronization, a low priority process hold-
ing alock can delay a higher priority process, effectively

*{m chael g, cheriton}@s. stanford. edu. Thiswork
was sponsoredin part by ARPA under US Army contract DABT63-91-
K-0001. Michael Greenwald was supported by a Rockwell Fellowship.

defeating the process scheduling. Blocking synchro-
nization can aso cause one process to be delayed by
another lockhol ding process that has encountered a page
fault or a cache miss. The delay here can be hundreds of
thousands of cycles in the case of a page fault. Thistype
of interferenceis particularly unacceptable in an OS like
the Cache Kernel where real-time threads are supported
and page faults (for non-real-time threads) are handled
at the library level. Non-blocking synchronization aso
minimizesthe formation of convoyswhich arise because
several processes are queued up waiting while a single
process holding alock gets delayed.

Finally, non-blocking synchronization providesgreater
insulationfromfailuressuch asfail-stop process(or)sfail-
ing or aborting and leaving inconsistent data structures.
Non-blocking techniques allow only a small window of
inconsistency, namely during the atomic compare-and-
swap sequence itself. In contrast, with lock-based syn-
chronizationthewindow of inconsistency spanstheentire
locked critica section. These larger critical sections and
complex locking protocols also introduce the danger of
deadlock or failureto release locks on certain code paths.

There is a strong synergy between non-blocking syn-
chronization and the design and implementation of the
Cache Kernd for performance, modularity and reliabil-
ity. First, signals are the only kernel-supported form
of notification, alowing a simple, efficient kernel im-
plementation compared to more complex kernel message
primitives, such asthoseusedinV [6]. Classlibrariesim-
plement higher-level communication likeRPCintermsof
signals and shared memory regions [25]. Non-blocking
synchronization alows efficient library implementation
without the overhead of disabling and enabling signals
as part of access and without needing to carefully restrict
the code executed by signa handlers.

Second, we simplified the kernel and alows spe-
ciaization of these facilities using the C++ inheritance
mechanism by implementating of most operating sys-
tem mechanisms at the class library level, particularly

the object-oriented RPC system [25]. Non-blocking syn-
chronizationallowstheclasslibrary level to betol erant of
user threads being terminated (fail-stopped) in the mid-
dle of performing some system library function such as
(re)scheduling or handling a page fault.

Finally, theisolation of synchronization from schedul -
ing and thread deletion provided by non-blocking syn-
chronization and themodul arity of separate classlibraries
and user-level implementation of servicesleadstoamore
modular and reliable system design than seems feasible
by using conventional approaches.

This synergy between non-blocking synchronization
and good system design and implementation carries for-
ward in the more detailed aspects of the Cache Kernel
implementation. In this paper, we describe aspects of
thissynergy in some detail and our experience to date.

The main techniqgues we use for modularity,
performance and reliability are aomic DCAS(or
Doubl e- Conpar e- and- Swap), type-stable memory
management (TSM), and contention-minimizing data
structures (CMDS).

DCAS (discussed in detail in Section 5) is defined in
Figure 1. That is, DCAS atomicaly updates locations
addr 1 and addr 2 to vaues newl and new? respec-
tively if addr 1 holds value ol d1 and addr 2 holds
ol d2 when the operation isinvoked.

The next section describes type-stable memory man-
agement, which facilitates implementing non-blocking
synchronization aswell as providing several independent
benefitsto the software structure. Section 3 describesthe
contention-minimizing data structures which have bene-
fitsin performance and reliability for lock-based as well
as non-blocking synchronization. Section 4 describesour
approach to minimizing the window of inconsistency and
the systems benefits of doing so. Section 5 describes
the non-bl ocking synchronization implementation in fur-
ther detail with comparison to a blocking implementa-
tion. Section 6 describes the non-blocking synchroniza-
tion primitives that we assumed for our approach and a
potential hardware implementation. Section 7 describes
the performance of our implementation using simulation
to show its behavior under high contention. Section 8
describes how our effort relates to previous and current
work in thisarea. We close with a summary of our con-
clusionsand directionsfor future work.

2 Type-Stable
(TSM)

Memory Management

Type-stable memory management (TSM) refers to the
management of memory alocation and reclamation so
that an alocated portion of memory, a descriptor, does
not change typewithin sometimeboundt ;4. Thisisa

int DCAS(int *addrl, int *addr2,
int ol di, int old2,
int newl, int new2)
{
<begi n at omi c>
if ((*addr1 == oldl) && (*addr2 == ol d2)) {
*addrl = newl; *addr2 = newZ;
return(TRUE);
} else {
return(FALSE);
}

<end at om c>

}

Figure 1 Pseudo-code definition of
(Doubl e- Conpar e- and- Swap)

DCAS

fancy name for an extension of an old idea. For example,
the process descriptors in many operating systems are
statically allocated at system initialization and are thus
type-stablefor the lifetime of the system execution.

Our notionof TSM incorporatesthree basi c extensions
to this conventional type of implementation. First, a
descriptor remains avaid instance of the type even when
itisnot active, i.e. onthefreelist. Second, TSM allows
multiple memory allocation poolsfor the same type. For
example, there can be a pool of thread descriptors per
cluster of processors on a large-scale multiprocessor to
minimize contention between clusters. Finaly, the type
of a portion of memory can change over time, but only
aslong asit istype-stable over sometimet;qp;.. More
specifically, a descriptor has to be inactive for at least
ts1ap10 Defore it can be redlocated as a different typel.
However, for simplicity, we assume an infinitet ;45 for
this discussion.

TSM simplifies the implementation of non-blocking
synchronizationagorithms. That is, because adescriptor
of type T1 is type-stable, a pointer of type T1 * to
the descriptor cannot end up pointing to a descriptor of
another typeasaresult of thisareaof memory being freed
and reallocated as type T2.

Consider, for example, the code shown in Figure 2 to
do a non-blocking deletion from alinked list?.

The delete operation searches down a linked list of
descriptorstofind thedesired element or detect the end of

1An exampleof a TSM implementationisacollection of descriptors
that are stored in a set of page frames which are allocated and released
over time. When more descriptors are required, additional page frames
can be alocated from the general pool and when the number of descrip-
tors falls, the descriptors may be consolidated into a smaller number
of pages and the excessive page frames returned to the general pool.
However, therelease of pageframesto the general pool must be delayed
sufficiently to ensure the type-stability property. This delay provides
a useful hysteresis to the movement of pages between this descriptor
collection and the general page pool.

2Thelist isinitialized with adummy nodeat the head, thus deletion
of the first element works correctly.

/* Delete elt */

do {
retry:
backof f | f Needed() ;
version = |ist->version;
for (p = list->head;
(p->next !'=elt);
p = p->next) {
if (p == NULL) { /* Not found */
if (version !=1list->version)

{ goto retry; } /* Changed */
return NULL; /* Really not found */
}

}
} while(!DCAS(&(Iist->version), & p->next),
version, elt,
ver si on+1, el t->next))

Figure 2: Deletion from the middle of list, protected by
DCAS and version number.

thelist. If theelement isfound, the element isatomically
deleted from the list by the DCAS operation. The DCAS
succeeds only if the list has not been modified since the
delete operation started, as determined from the version
field.

The code only checks for conflicts once it reaches the
desired element or the end of thelist. The descriptorsare
TSM so each pointer isguaranteed to point to adescriptor
of thistype. Without TSM, thelink pointer, p, may point
to a descriptor that has been deleted and reallocated as a
different type. This type error can cause a random bit-
field to beinterpreted as a pointer, and cause the search to
perform incorrectly, raise an exception due to unaligned
access, or read a device register. TSM isa simpler and
more efficient way of ensuring thistype safety than other
techniquesweare aware of that prevent reall ocation (such
as automatic garbage coll ection mechanisms or reference
counts), or that detect potential reall ocation (such as per-
list-element version numbers).

Besides these benefits to non-blocking synchroniza-
tion, TSM has several important advantages in the con-
struction of modular, reliable, high-performance oper-
ating systems. First, TSM s efficient because a type-
specific memory alocator can normally allocate an in-
stance of the type faster than a general-purpose allocator
can. For example, alocation of a new thread from a
freelist of (fixed-size) thread descriptorsis a simple de-
gueue operation whereas agenera -purpose allocator like
mal | oc may have to do a search and subdivision of its
memory resources. The class-specificnewand del et e
operators of C++ support a clean source code represen-
tation of TSM. This alocation can be made even more
efficient with many types because afree (or inactive) de-
scriptor is aready an instance of this type, and so may
require less initialization on allocation than a random

portion of memory.

Second, TSM aidsreliability becauseit iseasier to au-
ditthememory allocation, locatingall the descriptorsof a
given type and ensuring that pointersthat are supposed to
point to descriptors of agiven type actualy do so. With
fixed-size descriptors, TSM also avoids fragmentation
of memory that arises with general-purpose allocators.
Fragmentation can cause failure as well as poor perfor-
mance. Relatedly, TSM makes it easier to regulate the
impact of one type of descriptor on the overall system
resources. For example, with a collection of descriptors
that are allocated dynamically using the page frame ap-
proach described above, the number of pages dedicated to
thistype can be controlled to avoid exhausting the mem-
ory availablefor other uses, both from overallocation and
from fragmentation of memory.

TSM also minimizes the complexity of implementing
the caching model [7] of descriptorsinthe operating sys-
tem kernel. In this approach, the number of descriptors
of agiventypeislimited but an alocation never fails. In-
stead, asin a cache, a descriptor is made available by its
dirty data being written back to the higher-level system
management and then reused to satisfy thenew allocation
request. Thismechanism relieson limitingthe number of
descriptors, being able to locate an alocated descriptor
toreclaim, and being able to determine the dependencies
on these descriptors. TSM simplifies the code in each of
these cases.

TSM dso alows a modular implementation. From
an object-oriented programming standpoint, there can
be a base class descriptor manager class that is special-
ized to each type of descriptor. For example, thereis a
CacheKer nel Cbj Man class in our operating system
kernel that provides the basic TSM alocation mecha
nism, which is specialized by C++ derivation to imple-
ment Thr ead, Addr essSpace Ker nel and Memvap
types aswell as several other types.

3 Data Structures that Minimize Con-
tention

The Cache Kernel was al so designed and implemented to
minimizebothlogical and physical contentionto provide
for efficient non-blocking synchronization. By logical
contention, we mean contention for access to data struc-
tures that need to be controlled to maintain the consis-
tency and semantics of these data structures. By physical
contention, we mean the contention for access to shared
memory that needs to be controlled to maintain the con-
sistency and semantics of the memory system?.

Sphysical contention is separate from logical contention because
one can havelogical contention without physical contention as well as
vice versa, so called false sharing. For example, if two shared vari-

Minimizinglogical contentionwith non-blocking syn-
chroni zation minimizes the overhead of conflicting oper-
ations failing and being retried. It also avoids the com-
plexity of complex backoff mechanisms as part of the
retry.

Most of our techniques for contention minimization
are well-known. For example, one aspect of contention
minimization is replicating data structures for each pro-
cessor. In particular, there are per-processor ready and
delay queues in the Cache Kernel, so contention on these
structuresislimited to signal/interrupt handlers and man-
agement operationsto load balance, etc. being executed
by a separate processor.

Similarly, there is a signal delivery cache per proces-
sor which allows a significant number of signals to be
delivered by a processor without accessing the shared
signal mapping datastructure, which cannot be made per-
processor without replicating the entire structure. This
per-processor “ cache” approachissimilar tothat provided
by aper-processor TLB for addresstransation. The TLB
reduces access to therea virtua address space mapping
structure, which is necessarily shared among threads in
the address space.

Contention on a data structureis also reduced in some
cases by structuring it as a multi-level hierarchy. For
example, alist that is searched frequently may be revised
to be a hash table with a version number or lock per
bucket. Then, searches and updates are localized to a
single bucket portion of the list, reducing the conflict
with other operations, assuming they hash to different
buckets. The upper levels of the hierarchy are read-only
or read-mostly: descriptorsare only added at the leaves.

Physical contention is aso reduced by using cache-
aligned descriptors. TSM with its restricted alocation
of descriptors can also reduce the number of pages ref-
erenced as part of scan and search operations, reducing
the TLB missrate, another source of physical contention.
Finally, in thisvein, commonly updated fields are placed
contiguoudly and aligned to hopefully place them in the
same cache line, thereby making the updates more effi-
cient.

The spatial locality of data access achieved by these
techniques provides significant benefit for synchroniza-
tion, whether non-blocking or conventiona locks. This
spatial locality also minimizes the consistency overhead
when the system is running across multiple processors,
with each caching portions of this shared data. In gen-
eral, our experience (e.g. [10]) suggests that it is bet-
ter to (re)structure the data structures to reduce con-
tention rather than attempt to improve the behavior of

able can reside in the same cache line unit so there can be physical
contention without logical contention if two processor attempt to up-
date the variables simultaneously, each processor updating a separate
variable.

synchronization techniques under high contention. Low-
contention algorithms are simpler and thus easier to get
right, and faster as long as contention is actually low.

4 Minimizing theWindow of Inconsistency

The Cache Kerndl was also structured to minimize the
window in which a data structure was inconsistent. This
provides temporal locality to a critical section. Again,
we use familiar techniques. The basic patternisto read
all the values, compute the new values to be written, and
then write these new values all a once after verifying
that the values read have not changed. Since a structure
is generaly inconsistent from the time of the first write
to the point that the last write completes, removing the
computation from this phase minimizes the window of
inconsistency. To minimize the cost of verifying that the
read values have not changed, we use a version number
that coversthe data structure and isupdated whenever the
data structure changes. The use of aversion number also
avoids keeping track of the actual location read as part of
the operation.

The window of inconsistency is aso minimized by
structuring to minimize physical contention as part of
data structure access.

Physical contention increases the time for a processor
to perform an operation because it increases the effective
memory access time.

These techniques allow efficient non-blocking syn-
chronization. In particular, an updatetypically consistsof
a DCAS operation that updates the version number plus
one other location, with the version number ensuring that
the data structure has not been changed by another con-
current update. That is, the window of inconsistency is
reduced to the execution of the DCAS operation itself.

These techniques have other benefits as well. In par-
ticular, the reduced window of inconsistency reduces the
probability of afailure, such as athread termination, cor-
rupting the system data structures. They a so reduce the
complexity of gettingcritical section coderight because it
isshorter with fewer separate control pathsthroughit and
thereforeeasier to test. Some of thisstructuring would be
beneficial, if not required, for an implementation using
lock-based synchronization because it reduces lock hold
time, thereby further reducing contention.

5 Non-Blocking Synchronization Imple-
mentation

With the structuring of the Cache Kernel and supporting
class libraries described above, non-blocking synchro-
nization is relatively simple to implement. Most data

structures are collections of fixed-size descriptors. Sev-
eral collections are queues for service. For example,
thread descriptors are queued in the ready queue and a
delay queue of their associated processor. Other collec-
tionsare lookup or search structures such as a hash table
with linked list buckets. For example, we organize page
descriptorsintoalookup structure per address space, sup-
porting virtual -to-physi cal mappingfor the address space.

5.1 TheBase Approach

The non-blocking synchronization for these structures
followsacommon basestructure. Thereisaversion num-
ber per list. The DCAS primitiveis used to atomically
perform awriteto adescriptor inalist and increment the
version number, checking that the previous value of both
has not been changed by a conflicting access to the list.
Figure 2 illustrated this structure for deleting a descrip-
tor from a list, where the single write to the descriptor
was to change the link field of the predecessor descrip-
tor. Inserting a new descriptor D entailsinitializing D,
locating the descriptor in the linked list after which to
insert D, writing the D’s link field to point to the next
descriptor, and then performing the DCAS to write the
link field of thisprior descriptor to D and toincrement the
version, checking both locationsfor contention as part of
the update.

Dequeuing a descriptor from a TSM free list is a de-
generate case of deletion because the degueue always
takes place from the head. It is possible to optimize this
case and use a single CAS to dequeue without a version
number. However, with efficient DCAS support, it is
attractive to use DCAS with a version number to allow
the version number to count the number of allocations
that take place. (As another special case, an operation
requiring a most two locations for the reads and writes
can be updated directly using DCAS. We have used this
approach with array-based stacks and FIFO queues.)

Some operations that involve multiple writes to the
same descriptor can be performed by creating a dupli-
cate of this descriptor, performing the modifications and
then atomically replacing the old descriptor by the new
descriptor if the list has not changed since the duplicate
descriptor was created. This approach is a variant of
Herlihy’s general methodology [13] which can convert
a sequentia implementation of any data structureinto a
wait-free, concurrent one. However, we use DCAS to
ensure atomicity with respect to the entire data structure
(the scope of the version number) even though we are
only copying a single descriptor®. As a variant of this

4The basic Herlihy approachinvolves copying the entire data struc-
ture, modifying the copy, and then atomically replacing the old copy
with the new copy using CAS, and retrying the entire copy and mod-
ifying if there is a conflict. Our approach reduces the allocation and
copy cost to a single descriptor rather than the entire data structure but
requiresDCAS.

approach, the code can duplicatejust a portion of the de-
scriptor, update it and use DCAS to insert it in place of
the origina while updating a version number. If athread
failsbefore completing theinsertion, we rely on a TSM-
based audit to reclaim the partially initialized descriptor
after itisunclamed for ¢,;45:. time.

As afurther optimization, some data structures alow
adescriptor to be removed, modified and then reinserted
as long as the deletion and the reinsertion are each done
atomically. Thisoptimization savesthe cost of alocating
and freeing anew descriptor compared to the previousap-
proach. This approach requiresthat other operations can
tolerate the inconsistency of this descriptor not being in
thelist for some period of time. For example, the Cache
Kernel signal delivery reliesonalist of threadstowhich a
signal should beddlivered. A thread failsto get thesignal
ifitisnotinthelistat thetimeasignal isgenerated. How-
ever, we defined signal delivery to be best-effort because
there are (other) reasons for signal drop so having signal
delivery fail to a thread during an update is not a viola
tion of the signal delivery semantics. Programming the
higher-level software with best-effort signa delivery has
required incorporating timeout and retry mechanisms but
thesearerequired for distributed operationinany caseand
do not add significant overhead [25]. These techniques,
related to the transport-layer in network protocols, aso
make the system more resilient to faults.

Notethat just having asearch mechanismretry asearch
whenit failsin conjunctionwith thisapproach can lead to
deadlock. For example, if asigna handler that attempts
to access descriptor D, retrying until successful, iscalled
on the stack of athread that has removed D to perform
an update, the signal handler effectively deadlocks with
the thread.

5.2 Dealingwith MultipleLists

A descriptor that issupposed to be on multiplelistssimul-
taneously complicates these procedures. So far, we have
found it feasible to program so that a descriptor can bein
a subset of the lists, and inserted or deleted in each list
atomically as separate operations. In particular, al the
data structures that allow a descriptor to be absent from
alist alow the descriptor to be inserted incrementaly.
Overall, themagor Cache Kernd [7] datastructuresare
synchronized in a straightforward manner. Threads are
intwo linkedlists: the ready queue and the delay queue.
Descriptor freelistsare operated as stacks, making alloca
tionand deall ocation simpleand inexpensive. Thevirtua
to physical page maps are stored in atree of depth 3 with
widths of 128, 128, and 64 respectively. Although the
128 immediate descendants of the root are never deleted,
sub-trees below them can be unloaded. Modifications
to amap on level 3 are synchronized using DCAS with
its parent’s version number to make sure that the entire

subtree has not been modified in conflict with this up-
date. Findly, the Cache Kernel maintains a“dependency
map” that records dependencies between objects, includ-
ing physical to virtual mappings. It is implemented as
a fixed-size hash table with linked lists in each bucket.
The signal mapping cache structure, (an optimizationfor
signal delivery to active threads), is a so adirect mapped
hash table with linked listsin each bucket. The mgjority
of uses of single CAS are for audit and counters.

Synchronization of more complex data structuresthan
we have encountered can be handled by each operation
allocating, initializing and enqueuing a “message’ for a
server processthat serially executes the requested opera
tions. Read-only operations can still proceed as before,
relying on a version number incremented by the server
process. Moreover, the server process can run at high
priority, and include code to back out of an operation on
a page fault and therefore not really block the operation
anymore than if the operation was executed directly by
the requesting process. The server process can aso be
carefully protected against failure so the data structureis
protected against fail-stop behavior of arandom applica
tion thread, which may be destroyed by the application.

This approach was used by Pu and Massdin [17]. For
example, a genera -purpose memory page allocator can
be synchronized in this manner, relyingona TSM mem-
ory pool to minimize the access to the general allocator.
However, in our code to date, the only case of queueing
messages for aserver moduleariseswithdevicel/O. This
structure avoids waiting for the device 1/0 to complete
and is not motivated by synchronization issues.

Other work has investigated other alternatives or op-
timizations of this approach, in which helper functions
are executed by a new thread if there is work left to
complete or rollback by a previous thread accessing this
data structure. For example, Isragli et a. [16] describe
a non-blocking heap implemented using 2-word LL/SC
along these lines, performing multiple updates as multi-
ple distinct operations. However, to date, we have not
needed to employ these so-called helper techniques and
therefore cannot comment on their actual practicality or
utility. Moreover, it seems questionablefrom areliability
standpoint to have threads from separate address spaces
sharing access to complex data structures. These data
structures are also more difficult to program and to main-
tain and often provide margina performance benefitsin
practice, particularly when synchronization overhead is
taken into account. Their asymptotic performance bene-
fits are often not realized at the scale of typical operating
system data structures.

5.3 Comparison to Blocking Synchroniza-
tion

Much of the structuring we have described would be
needed, or at least beneficia, even if the software used
blocking synchronization. For instance, TSM has a
strong set of benefits as well as contributing to the other
techniques for minimizing contention and reducing the
window of inconsistency.

We have found that the programming complexity of
non-blocking synchronization is similar to conventional
blocking synchronization. This differs from the experi-
ence of programmers using CAS-only systems. DCAS
playsasignificant part inthecomplexity reduction. Using
the crude metric of lines of code, a CAS implementation
(Valois) of concurrent insertion/deletion from a linked
list requires 110 lines, while the corresponding DCAS
implementation requires 38 (anon-concurrent DCASim-
plementation takes 25). The CAS-only implementation
of a FIFO queue described in [18] requires 37 lines, our
DCASversion only 24. The DCAS versions are corre-
spondingly simpler to understand and toinformally verify
as correct. In many cases, using DCAS, the trandation
from a well-understood blocking implementation to a
non-blocking one is straightforward. In the smple case
described in Figure 2, theinitia read of the version num-
ber replaces acquiring the lock and the DCAS replaces
releasing the lock.

Infact, version numbersare ana ogousto locksin many
ways. A version number has a scope over some shared
data structure and controls contention on that data struc-
ture just like a lock. The scope of the version number
should be chosen so that the degree of concurrency is
balanced by the synchronization costs. (The degree of
concurrency is usualy bounded by memory contention
concerns in any case). Deciding the scope of a version
number is similar to deciding on the granularity of lock-
ing: thefiner thegranularity the more concurrency but the
higher the costsincurred. However, aversion number is
only modified if the data structure is modified whereas a
lock isalwayschanged. Giventhefrequency of read-only
operationsand the costs of writeback of dirty cache lines,
using read-only synchronizationfor read-only operations
is attractive. Finally, version numbers count the number
of times that a data structure is modified over time, a
useful and sometimes necessary statistic.

Finally, the overall system complexity using blocking
synchronization appears to be higher, given the code re-
quiredto get around the problemsit introduces compared
to non-blocking synchronization. In particular, special
coding isrequired for signal handlers to avoid deadl ock.
Specia mechanisms in the thread scheduler are required
to avoid the priority inversion that locks can produce.
And, additional code complexity is required to achieve
reliable operation when a thread can be terminated at a

random time. For example, some operationsmay haveto
be implemented in a separate server process.

A primary concern with non-blocking synchroniza-
tionisexcessive retriesbecause of contending operations.
However, our structuring has reduced the probability of
contention and the conditional | oad mechanism described
inthenext section can be used to achieve behavior similar
to lock-based synchronization.

6 Non-blocking Synchronization Primi-
tives

Our approach assumes an efficient implementation
of DCAS functionality. In this section, we
briefly outline an instruction set extension to the
| oad- | i nked/st ore-condi ti onal) instructions
to support DCAS. (A software implementation is dis-
cussed in Section 6.1.) With a processor support-
ingl oad-1i nked (LL) and st or e- condi ti onal

(SC) instructions, add two instructions:

1. LLP (load-linked-pipelined): load and link to a sec-
ond address after aLL. This| oad islinked to the
following SCP.

2. SCP (store-conditiona-pipelined): Store to the
specified location provided that no modifications
have been made to either of the memory cells des-
ignated by either of the most recent LL and LLP
instructions and these cache lines have not been in-
validated in the cache of the processor performing
the SCP.

If aLLP/SCP sequence nested withinan LL/SC pair fails,
the outer LL/SC pair failstoo.

DCASisthenimplemented by theinstruction sequence
shownin Figure 3 (using R4000instructionsin additionto
the LL/SC(P) instructions). TheLL and LLPinstructions
inlines 1 and 2 “link” the | oads with the respective
st or esissued by thefollowing SC and SCPinstructions.
Lines 3 and 4 verify that (TO) and (T1) contain VO
and V1, respectively. The SCPand SC in lines5 and 6
are conditional. They will not issue the st or es unless
(TO) and (T1) have been unchanged sincelines 1 and
2. This guarantees that the results of CASinlines 3 and
4 arestill valid at line 6, or elsethe SC fails. Further, the
st or e issued by a successful SCP is buffered pending
asuccessful SC. Thus, SCinline6 writesUL and U0 to
(T1) and (TO) atomically with the comparison to VO
and V1°.

5Given data structures that are protected by a version number, te
DCAS s actualy a Conpar e- And- Doubl e- Swap (CADS) — the
second value cannot have changed if the version number is unchanged.
In these casesaminor optimizationis possibleand line 4 can bedel eted.

/*
* | f (TO) == VO, and (T1l) == V1, then
* atomically store U0 and Ul in TO and T1
*
/
DCAS(TO, T1, VO, Vi, U0, U1)
;; Get contents of addresses in registers.

1 LL T3, (T1)
2 LLP T2, (TO)
;; Conpare to VO and V1. |f unequal, fail.
3 BNE T2, VO, FAIL
4 BNE T3, Vi, FAIL

I f equal, and unchanged si nce LOAD,
- store new val ues
5 SCP uwo, (TO)
6 SC Ui, (T1)
., Success of SC and SCP is stored in Ul
BLEZ Ul, FAIL

FAI L:

Figure 3: DCAS Implementation using LL/SC and LLP/SCP.
Success or failure of SC (and thus of the DCAS operation) is
returned in U1 or whatever general register holds the argument
to SC. 1 denotessuccess, O failure. |f the next instruction triesto
read U1, the hardwareinterlocks (asit already doesfor LL/ SC)
if the result of SCisnot aready in U1.

We have worked out a detailed design for the imple-
mentation of these two instructionsin a RISC proces-
sor such as the R4000 but the description is omitted for
brevity.

6.1 Softwarelmplementation of DCAS

DCAS functionaity can be implemented in software us-
ing atechniqueintroduced by Bershad [4]. DCASisim-
plemented using a lock known to the operating system.
If a process holding this locks is delayed by a context
switch, the operating system rollsback the process out of
the DCAS procedure and rel eases the lock. The rollback
procedureis relatively simple because the DCAS imple-
mentation is simple and known to the operating system.
Moreover, the probability of acontext switch inthe mid-
dle of the DCAS procedureis low because it is so short,
typicaly a few instructions. Thus, the rollback cost is
incurred infrequently.

This technique can be used more generally to imple-
ment other primitives such as n-location CAS. We focus
on DCASimplementation becausethe primary relationto
our work is offering a software implementation of DCAS
as an dternative to our proposed hardware support. It
also seems simpler to just implement rollback for DCAS
compared to more general primitives.

This approach has the key advantage of not requiring
hardware extensions over the facilities in existing sys-
tems. Moreover, its performance may be comparable to
our hardware extensions, especially on single processors
or small-scale multiprocessors. Further measurements
are required here. However, there are a few concerns.

First, there is the cost of locking. The straight-forward
implementation requiresthe DCAS procedure to access a
common global lock from all processes. In amulti-level
memory with locks in memory, the memory contention
between processors for thislock can be significant. For
example, the data structure may be in a shared segment
that is mapped in by two independent processes. If the
locks are associated with each DCAS instance, there is
more cost and complexity to designatethe locks and crit-
ical section to the operating system and to implement the
rollback. The locking and unlocking also modifies the
cache line containing thelock, further increasing the cost
of this operation because writeback is required.

Second, Bershad’ sapproach requiresrereading thetwo
locationsfrom memory aswell asan extraread and write
to set the lock and write to clear the lock.

Third, on multi processors, caremust beused by readers
of shared data structures if they want to support unsyn-
chronized reads. Without depending on the lock, read-
ers can see intermediate states of the DCAS, and read
tentative values that are part of a DCAS that fails. Re-
quiring synchronization for reads significantly increases
contention on the global lock. Note that in many cases
TSM reducesthedanger of unsynchronized readsbecause
the reads cannot cause type errors. Writes are protected
by the global lock, and the final DCAS will detect that
the unsynchronized reads were suspect, and fail. Sys-
tems that provide hardware DCAS require no additional
read synchronization beyond that performed automati-
caly by the memory system. Further experience and
measurements are required to determine whether thisisa
significant issue on real systems.

Finally, the Bershad mechanism seems harder to test
under al conditions. Forinstance, itispossiblethat oneof
thewriteoperationsthat therollback needsto undoistoan
area of memory that has been paged out or that one of the
addresses isillegal. The system a so needsto ensure that
athread isrolled back out of any DCAS critical sectioniif
itisterminated. Webelieve our hardwareimplementation
is simpler to verify and naturally operates on top of the
virtual memory management of the system and on top of
directly accessible physical memory at the lowest level
of the system software. It is of concern that a minor
change to the software mechanisms in Bershad's scheme
could result in very subtle errors in execution that could
go undetected in a system for along period of time.

6.2 Hardware Contention Control

As afurther extension, a processor can provide a condi-
tiona loadinstructionor Cl oad. TheCl oad instruction
isaload instruction that succeeds only if the location be-
ing loaded does not have an advisory lock set onit, setting
the advisory lock when it does succeed.

With Cl oad available, the version number is |oaded

initially using Cl oad rather than a normal load. If the
Cl oad operation fails, the thread waits and retries, up
to some maximum, and then uses the norma load in-
struction and proceeds. This waiting avoids performing
the update concurrently with another process updating
the same data structure. It aso prevents potentia starva-
tion when one operation takes significantly longer than
other operations, causing these other frequently occuring
operationsto perpetually abort theformer. It appears par-
ticularly beneficial inlarge-scal e shared memory systems
where the time to complete a DCAS-governed operation
can be significantly extended by wait times on mem-
ory because of contention, increasing the exposure time
for another process to perform an interfering operation.
Memory references that miss can take 100 times as long,
or more, because of contention misses. Without Cload, a
process can significantly delay the execution of another
process by faulting in the data being used by the other
process and possibly causing itsDCAS to fail aswell.

Thecost of usingC oad inthecommon caseissimply
testing whether the Cl oad succeeded, given that aload
of the version number isrequired in any case.

Cl oad can be implemented using the cache-
based advisory locking mechanism implemented in
ParaDiGM [8]. Briefly, the processor advises the cache
controller that aparticular cachelineis*“locked”. Normal
| oadsand st or esignorethe lock bit, but the Cl oad
instruction tests and sets the cache-level lock for a given
cachelineor elsefailsif itisalready set. A storeoperation
clears the bit. Thisimplementation costs an extra 3 bits
of cache tags per cache line plus some logic in the cache
controller. Judging by our experience with ParaDiGM,
C oad isquite feasible to implement.

7 Performance

The performance on the ParaDiGM experimental multi-
processor isfirst discussed. We then discussresultsfrom
simulation indicating the performance of our approach
under high contention. Finaly, we discuss aspects of
overal system performance.

7.1 Experimental Implementation

The operating system kernel and class librariesrun onthe
ParaDiGM architecture[8]. The basic configuration con-
sists of 4-processor Mot