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This thesis describes an experiment to use object-oriented programming and design tech-
niques to design and implement an operating system. This experiment uses object-oriented
techniques to address problems of operating system portability, maintainability, extensibility
and efficiency. The thesis also characterizes an object-oriented operating system.

The results of this experiment are presented in two parts. First, after presenting background
information and relevant definitions, I characterize an object-oriented operating system. 1
then proceed to describe the design and implementation of an experimental object-oriented
operating system. This presentation maps conventional operating system wisdom into the
object-oriented framework supported by the experimental system. In this way, I show that
object-oriented techniques can support realistic operating system algorithms and mechanisms,
as well as provide software engineering advantages. The presentation of the system stresses
ways in which object-oriented techniques support the system’s design and implementation.

The experimental system is evaluated in terms of performance, maintainability, portability
and extensibility by using examples of how characteristic operating system problems are ad-
dressed. I will show that structuring an operating system in an object-oriented fashion and using
the capabilities provided by an object-oriented programming language allows the construction
of portable, extensible and maintainable operating systems without sacrificing performance.
Not only is performance not sacrificed, I will even show how such techniques can often help
lead to increased performance over conventionally structured systems.
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Chapter 1

Introduction

Operating system software should be efficient and flexible. Furthermore, an operating system
should survive a lifetime of changes without sacrificing either of these properties. Among oth-
ers, these changes include advances in hardware technology and changing demands from users.
Keeping pace with hardware advances necessitates portability. In the past, such hardware ad-
vances have included the introduction of virtual memory and multiprocessors. If an operating
system’s abstractions and interfaces are common across a variety of hardware, computer users
can take advantage of new and faster hardware with minimal program revisions. Operating
systems should be extensible enough to meet changing demands from users. In the past, ex-
amples of such demands have included support for graphical user interfaces and distributed
systems. System designers cannot always predict and stay ahead of such changing demands.
However, they should try to design extensible systems that can withstand moderate changes,
since a poorly designed system will not withstand even the most minor changes.

Not only are requirements of portability, efficiency and extensibility important on their own,
but their interactions can require important tradeoffs. For example, if performance modifica-
tions increase module interdependencies, portability may be sacrificed for efficiency. Likewise,
extensions may impair performance if existing mechanisms are altered to support or coexist
with them. Operating system engineers are increasingly faced with such tradeoffs. They must
often choose between keeping operating systems portable, extensible, maintainable, and efficient.

Using modern programming methodologies, languages and software engineering techniques

may be the best hope to overcome these problems. The object-oriented paradigm|[Weg87, JF88,



Sny86, Mey87, Boo86, HO87, Mey86, GR83] is rapidly gaining attention as a useful tool to
solve the kind of problems operating system software suffers. Object-oriented programming is
claimed to support the sharing of common interfaces and code, incremental extensibility, and
the development of reusable and extensible software by allowing functions to be written that
can take many different types of objects as arguments. In this thesis [ describe an experiment to
use object-oriented programming and design techniques to design and implement an operating
system. I evaluate the success of object-oriented techniques at addressing problems of operating
system portability, maintainability, extensibility and efficiency. Simultaneously I characterize
what constitutes an object-oriented operating system.

The results of this experiment are presented in two parts. First, after presenting background
information and relevant definitions, I characterize an object-oriented operating system. 1
then proceed to describe the design and implementation of an experimental object-oriented
operating system. This presentation maps conventional operating system wisdom into the
object-oriented framework supported by the experimental system. In this way, I show that
object-oriented techniques can support realistic operating system algorithms and mechanisms,
as well as provide software engineering advantages. The presentation of the system stresses
ways in which object-oriented techniques support the system’s design and implementation.

The experimental system is evaluated in terms of performance, maintainability, portability
and extensibility by using examples of how characteristic operating system problems are ad-
dressed. I will show that structuring an operating system in an object-oriented fashion and using
the capabilities provided by an object-oriented programming language allows the construction
of portable, extensible and maintainable operating systems without sacrificing performance.
Not only is performance not sacrificed, I will even show how such techniques can often help
lead to increased performance over conventionally structured systems.

In detail, the experiment I propose is to design, build, and evaluate an operating system
in which the components are organized as a protected, dynamic collection of objects, defined
by classes that are structured by inheritance. All components of the operating system, from
low level entities like page tables and device registers, to high level abstractions like processes
and files, are designed and implemented as objects. Interaction between these components is
implemented by sending messages between objects. The object-oriented attributes of these

components are maintained dynamically across and within the privileged (operating system)



and non-privileged (application) operating modes of the computer system. Since the construc-
tion of an entire operating system is beyond the scope necessary to prove this thesis, I will
concentrate on specific subsystems of an operating system. In particular I will focus on mem-
ory management, process management, and the operating system interface. These subsystems
are critical to any operating system and are fundamental enough to show that object-oriented
techniques are applicable to low-level operating system algorithms. Work by others will address
additional subsystems of an object-oriented operating system[Mad91, Helng, Ley88, Joh91].

The system I present builds on and integrates accepted operating system techniques in-
cluding: contemporary approaches to virtual memory management and paging; fully reentrant,
multithreaded kernels; lightweight concurrent processes; and support for multiprocessors. The
mapping of such techniques into the object-oriented paradigm, and the unique insight this gives,
is novel and interesting in its own right. The system is distinguished from other work by imple-
menting a protected, multiprogrammed operating system using object-oriented techniques and
by providing an object-oriented application interface to access system services.

I will attempt to show that operating systems built using object-oriented techniques:
e can be more maintainable than other systems. In particular that they benefit from:

— increased modularity, which isolates machine dependencies and increases portability.
— increased interface reuse, which improves documentation and understanding.

— increased code reuse, which saves programmer time.

e are more extensible than less structured systems. In particular, their modularity can
provide a framework that allows objects to be replaced as the need arises, thus altering

operating system policies and mechanisms.
e most importantly, perform on a par with other systems.
In short, I will lend credence to the statement:

“To build better operating systems, we should be building object-oriented operating
systems”.

Note, however, that the prevailing assumption of this thesis is that the object-oriented tech-

niques are presented as a tool and by no means a “silver bullet”. The techniques set forth in this



thesis will help operating systems engineers design and implement well-structured, portable, and
efficient operating systems. These results are not automatic, however, and cannot be achieved
without good operating system algorithms and competent system engineering and program-
ming.

The rest of this thesis is arranged as follows. Chapter 2 presents operating system require-
ments and problems in detail and surveys previous design methodologies and sample systems
using each methodology. Chapter 3 presents definitions of object-oriented design and program-
ming relevant to the rest of the thesis. Chapter 4 presents the definition of an object-oriented
operating system along with the potential advantages of constructing an operating system in
such a way. It concludes by introducing the experimental systems. Chapters 5 through 7
present the experimental system in detail. They describe the object-oriented implementation
and performance of the various operating system subsystems designed and implemented. In
particular, specific concrete examples of the advantages object-oriented techniques have had
on the design, implementation and modification of the system are given. Finally, Chapter 8

presents the conclusions and proposed potential directions for future research.



Chapter 2
Operating Systems

2.1 Operating System Characteristics

In general, the purpose of an operating system is to provide programmers with an abstraction
that simplifies the programming and management of a computer’s resources. These resources
include processors, memory, input/output devices and permanent storage devices. An operating
system should control and manage resources reliably and efficiently, and often must enforce
policies on their use. The abstraction provided by an operating system is usually in the form
of a set of primitive operations providing resource access and control. Programmers use these
primitive operations, or primitives, when writing programs that need to obtain operating system
services. The set of these primitives will be termed the operating system’s application interface
and programs using the services of the operating system will be termed application programs or
simply applications. The complexity and richness of application interfaces provided by operating
systems varies widely, but the common subset probably includes primitives to support file and
device input/output (I/0O), process creation/deletion, and memory allocation/deallocation.
Examples of the low level resource management functions that an operating system must
perform include moving the head on a disk drive, handling interrupts from devices, or writing
packets of data to a network interface. Even where these functions have direct hardware device
support, it is the operating system’s responsibility to supervise such resource management
functions from their initiation to their completion. Operating systems enforce policy decisions

including scheduling priorities of application programs, the amount of memory allocated to each
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Figure 2.1: Conceptual view of an operating system

application, how long each application shall be given the processor at a time, and the files on
secondary storage accessible by an application.

Most operating systems impose a barrier between applications and system functions and
data in an attempt to maintain integrity of their data and function, and ensure continuity of
operating system services in the presence of potentially malicious or erroneous applications.
This barrier is called the system/application barrier. The system/application barrier encap-
sulates the internal components of the system by limiting requests for system services to the
operating system primitives. The primitives provide the only way to cross the barrier (see
Figure 2.1). Depending on the particular computer architecture and the requirements of the
operating system, the barrier may be enforced by hardware mechanisms, or be merely a pro-
gramming convention. If it is simply a programming convention, malicious applications can
circumvent the barrier.

The application interface primitives of an operating system allow delayed binding of applica-
tion requests to the operating system functions implementing desired system services. Without

such a delayed binding, applications would have to be linked together with the operating sys-



tem, or include in their data addresses of the system primitive routines. The delayed binding
permits the operating system to be changed without modifying the applications.

Most operating systems provide their application interface primitives by an indirection
through entry points into the operating system. The arguments to such entry points include
the operation to be performed and the arguments to that operation. Such entry points de-
code the desired operation and its arguments, verify the arguments are correct, and call the
proper operating system function that implements the service. Conventional operating systems
provide a fixed set of services in the form of a predefined set of primitives. In UNIX System
V[SVI85] for example, there are about 64 primitives.! User applications written to use this
interface are independent of its actual implementation and the implementation of the internals
of the operating system. New revisions of an operating system may support applications built
for older revisions by maintaining backward compatibility with the interface provided by the
older revisions of the system. However, as hardware and application requirements change, the
interface primitives are likely to need changing as well. UNIX for example, has had numerous
additions to its interface from the original version[RT75] to the current versions[SVI85, BSD8&4].

Avoiding corruption by application programs is just one half of the problem of protecting
system data and keeping it consistent. Operating system software must also deal with poten-
tial inconsistencies in system data that the operating system software itself might cause. For
example, if multiple threads of control are executing the operating system code, they might
leave shared data in an inconsistent state unless they synchronize their use of the data.

Other potential inconsistencies can arise from interrupt processing. Interrupts can occur
at almost any time during a system’s execution. If an operating system is in the middle of
updating system critical data and it receives an interrupt, the function to handle that interrupt
might need access to the same data. If the interrupted routine had not yet finished updating
the data, the interrupt handling function might reference the data in an inconsistent state.
Even worse, if the interrupt handling function were to further attempt to update the data, it
could compound the problem by further altering already inconsistent data.

The need to prevent potential inconsistencies in shared data caused by concurrent accesses
is generally termed guaranteeing mutual exclusion. Protecting data from corruption during

interrupts is usually addressed on a uniprocessor by disabling interrupts. On a multiprocessor,

In UNIX, primitives are usually termed system calls.



this is not enough; mutual exclusion is usually guaranteed by a combination of disabling inter-
rupts to prevent accesses by the same processor and using spin-locks and/or semaphores[Dij68§]

to prevent access by other processors.

2.2 Types of Operating Systems

The earliest computers had no operating systems by the modern meaning of the term, and had
no need of them. Programmers using a computer had complete access to the entire machine.
There was no protection mechanism to keep an application program from accessing any device
or memory location desired. Applications for such computers ran sequentially. Each would
reinitialize the machine for its use, consume its input, perform its computation and produce
its output. A program for such a computer is, in a sense, simultaneously the operating system
and an application. Operating systems for some embedded systems still behave this way. An
embedded system is a computer that is contained within a device whose primary purpose is
usually not general purpose computation. An example is the navigation computer found on
most modern aircraft, or a computer managing call routing in the phone system.

In the absence of an operating system, a programmer has to write functions to manipulate
all the devices of the computer. This includes reading data from tapes or disks (if the computer
even has any) and generating output to a printer or back to disk or tape. Embedded systems
usually have more complex devices, for example, sensors to read and displays to update. These
device manipulation functions are difficult to write and must be duplicated in every applica-
tion that uses the computer. For an embedded system this is usually not a problem as there
is often only one “application” ever written. But general purpose computers with multiple
application programs should not require reimplementing these functions for every application.
If the functions are complex enough to warrant it, libraries of device control routines can be
written and used by application programmers to avoid having to reimplement them for every
application. These libraries could be considered crude operating systems. This is often the
form the operating systems for very early computers took.

If a computer is shared by many users, each with many application programs to run, both
computer and programmer time can be utilized more efficiently if each application does not

have to be written to perform all the initialization and device management required to make



the computer usable each time it begins. The solution to this problem is to create supervisor
programs that initialize the computer and load and execute applications one at a time. When an
application finishes, the supervisor program again takes control and reinitializes the computer
for the next application. The supervisor also manages all the device I/O requests for the
applications. A supervisor is implemented by localizing common I/O routines, leaving them
always resident in the computer’s memory, and allowing application programs to call them.
These routines define the application interfaces of such operating systems.

Operating systems of this type exhibit most of the characteristics described in the intro-
duction to this chapter. Many of today’s personal computer operating systems are designed
this way. Most of these systems are, however, unprotected operating systems. Unprotected
here implies that such systems lack hardware enforcement of their system/application barrier.
Without hardware support for protecting the operating system functions and data from mali-
cious or aberrant applications, such systems can be unreliable and easily corrupted. This kind
of system is often euphemistically called a single user system. While lack of protection may be
acceptable for a personal computer, or a computer where the applications are thoroughly de-
bugged and trusted, it is not acceptable on shared computers. Having to reboot and reinitialize
the machine every time any application has a bug is unacceptable.

Modern computer architectures provide mechanisms that can be used by an operating sys-
tem for protection. These mechanisms include privileged erecution modes for processors and
memory protection schemes. They prevent non-privileged application programs from accessing
the memory storing the operating system data and functions. Operating system functions ex-
ecute in the most privileged mode, allowing access to system data and functions. Application
programs execute in the least privileged mode restricting them from accessing system data and
functions. In addition, the least privileged mode prevents the execution of certain processor
instructions that might compromise the systems security, for example, a set privilege mode
instruction. The least privileged mode is also usually denied any direct access to resources.
Disallowing applications direct access to system memory and resources enforces the encapsula-
tion of the hardware that the system provides. In such protected operating systems, primitives
are implemented with special supervisor call (SVC), or trap, instructions. These instructions
raise the privilege level of the processor, and simultaneously jump to an entry point within

the operating system’s memory. Operating system entry points are functions that verify their



arguments and then perform then requested service. Once the system service is complete, the
operating system lowers the privilege level of the processor back to that of the application and
resumes the application at the instruction following the SVC or trap instruction.

A multiprogrammed operating system allows multiple applications to reside in the com-
puter’s memory simultaneously. The processor is shared by assigning it to another application
while an application is awaiting an I/O completion. This gives more efficient utilization of a
computer and its attached devices by overlapping I/O and computation. A time-shared op-
erating system is a multiprogrammed operating system in which a timer enforces the sharing
of the processor by interrupting executing applications after a certain guantum of time if they
have not yet blocked on an I/O request. Applications must be protected from one another
in a multiprogrammed system. On computers that sequentially execute applications, it was
enough to partition the resources of the computer into two parts: those used by the system
and those used by the application. Multiprogrammed operating systems must share computer
resources (mainly memory) between multiple applications. Support for this is usually provided
by allowing multiple address spaces that only the operating system can change between. Each
application is assigned its own address space and cannot reference any data or functions in other
address spaces. Multiple address spaces can be provided in many ways, including: base/bounds
registers, segmentation, and virtual memory[Dei84a, PS85].

As an alternative to building costly high performance processors, the proliferation of low cost
microprocessors has allowed system designers to build high performance computing systems out
of a large number of small, inexpensive systems. Distributed operating systems support such a
computing system. Each computer, or node in a distributed system is connected to the others by
some form of network allowing inter-node communication. A distributed operating system pro-
vides an application the abstraction of a single computer with all resources accessible through
a uniform, location transparent mechanism[TvR85]. Many distributed systems exchange in-
formation between programming entities using messages. The entities are distributed across
nodes in the system. Each entity has a global identification. Messages are sent to entities in
such a way that they are independent of the entity’s location. Operating system services are

provided by such entities and may reside on arbitrary nodes.
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In summary, operating systems range from embedded systems, to simple I/0 library pack-
ages, to multiprogrammed systems that protect themselves from applications and applications

from each other, to distributed systems.

2.3 Operating System Software Engineering

Most operating systems are large bodies of software and require considerable software mainte-
nance. Like any other large software system, they are likely to have bugs that will be discovered
and fixed over time. Bug fixes are one just one form of software maintenance, others include
adapting software for new purposes, adding new features, and enhancing existing features.
Brooks surveys examples of such problems that confronted the IBM OS/360 system in [Bro75].
Current estimates show that software maintenance costs as a percentage of the total software
budget have grown from 35-40% in the 1970’s to a projected 78-80% in the 1990’s[Pre82].
Operating systems do not only suffer from the normal maintenance problems associated
with large software systems, they also have some characteristic software engineering problems
of their own. The following sections discuss the additional burdens that concerns of portability,

efficiency and extensibility place on operating system programmers.

2.3.1 Portability

The decades of the 1970’s and 1980’s were characterized by rapid advances in computer archi-
tecture that lead to an increasing diversity across the spectrum of available computer hardware.
To isolate application programmers from this diversity, these decades saw an opposite trend in
computer software, namely, the desire to provide common computing environments across dif-
fering computer hardware. This need, along with the costs of developing new applications for,
and retargeting existing ones to, new operating systems makes it desirable to keep operating
systems portable across broad and diverse ranges of computers. For example, the UNIX™M op-

erating system[RT75]? is available on computers ranging from personal computers costing a few

2UNIX will be mentioned extensively in examples throughout the rest of this section. This is mainly because
of its current prevalence in the world of operating systems and, therefore, the likely chance that the reader is
familiar with it. UNIX was originally developed at Bell Laboratories in Murray Hill, New Jersey. During its
evolution many individuals and institutions contributed new features to UNIX. The University of California
at Berkeley added paged virtual memory, a new file system and internetworking support to UNIX[LMKQ89],
Sun Microsystems, AT&T, and other companies helped develop UNIX into a commercial operating system, and
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thousand dollars [App89, IBM88a] to mainframe computers costing millions of dollars[Cra88].
Yet, to facilitate program portability, the UNIX interface is preserved across this range. Ob-
viously, as diversity in hardware increases, keeping an operating system portable becomes an
increasingly difficult task. Its intimate coupling to a computer’s hardware only compounds
this problem. Designing operating systems for portability may make it necessary for particular
parts of a system to have many different versions tailored for various architectures. However,
since the versions of these parts for different machines all likely perform a similar function, large
portions will be identical. If each version is independent, keeping the commonalities in phase

as changes are made can be extremely difficult.

2.3.2 Efficiency

Operating system software has an extremely high demand for efficiency placed on it. Purchasers
of computer hardware want to get the maximum performance for their dollar. Since operating
systems are the primary managers and controllers of a computers resources, inefficiencies can
have a tremendous effect on overall system and application performance. Efficiency concerns
impact operating software engineering in two ways. First, the most flexible and beneficial
software engineering techniques may be inapplicable to operating system construction due to
their performance limitations. For example, while interpreted dynamically typed programming
languages often provide excellent programming development and debugging environments, the
performance of such languages is likely to be insufficient for operating system software. Second,
optimizing an operating system for maximum performance on a given architecture may impact
its portability to other architectures. For example, using custom context switching instruc-
tions or high-performance I/O instructions may bias the implementation towards a particular
architecture. What is needed is a mechanism to allow such optimizations to be performed in a

localized way and remain isolated from the rest of the system.

2.3.3 Static Extensibility

Operating system requirements for extensibility come in many forms. Static extensions are those

implemented by modifying the operating system source code and rebuilding the system. Often

recently, Carnegie Mellon University has begun to reimplement much of the UNIX internals with its Mach[A86]
project.
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such extensions are the result of hardware advances and the corresponding change in demands
that they cause programmers to place on the operating system. Such extensions can lead to
major modifications of existing operating systems and often necessitate entirely new operating
systems being designed and implemented. For example, the introduction of virtual memory
has allowed applications to be written with memory requirements that far exceed the amount
of physical memory of the computer. This requires operating systems to manage the sharing
of physical memory not only between the address spaces of different applications, but within
different parts of the address space of the same application. Simply partitioning the available
memory into pieces large enough to hold each application is no longer a possible solution.
Another example of how hardware advances have stressed operating systems is the way in
which multiprocessors have stimulated the development of applications requiring concurrently
executing threads of control sharing common data. This requires operating systems that can
cope with shared memory and maintain data integrity in the presence of concurrent accesses.

UNIX, for example, has undergone considerable changes to deal with shared memory and
multiprocessors. Multiple solutions have been adopted to support shared memory. One ap-
proach is to extend UNIX to allow specification of regions of a process’s address space to be
shared between a parent and child process across a fork.®> This is the approach adopted in the
UMAX[Enc86] and Mach[R*87] versions of UNIX. Another approach is to allow a program-
mer to specify a region of a program’s memory to be shared with other programs that make
similar requests. This solution is chosen as the basis for the UNIX System V shared memory
standard[SVI85]. The first solution follows the UNIX philosophy of passing resources (previ-
ously just open files but now memory as well) by process creation. The second mechanism
is somewhat more flexible and allows easy implementation of shared code libraries. However,
the interface of UNIX is now inconsistent between UMAX, Mach and System V. Application
portability has been sacrificed to allow shared memory.

Multiprocessor architectures likewise affected UNIX. For an application program to take

full advantage of the concurrency made possible by multiprocessors, it is necessary to have

®The fork primitive is the UNIX process creation primitive. The semantics of fork are to create a second, or
child, process with an exact copy of the creating process’s memory. The second process has no further access
to its parent process’s memory and communicates with its parent process only through the UNIX I/O system.
In UNIX, new programs are executed using the ezec primitive. The exec primitive replaces the contents of the
memory of the invoking process with the data and code of an entirely new program and directs the process to
jump to that programs beginning.
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multiple processes simultaneously executing on multiple processors. This means that multiple
processes may simultaneously require services from the operating system. The assumption in
the original UNIX implementation was that only one process would be executing the operating
system’s code at a time. Therefore, when UNIX processes executed system code by invoking
an operating system primitive, they were guaranteed exclusive access to system data by simply
disabling interrupts and not relinquishing the processor to another process until the critical
data was updated or accessed. On a multiprocessor this is not adequate. A process executing
on another processor may simultaneously need access to the same data. One solution to the
problem is to adopt a master/slave system in which a select, or master, processor executes all of
the operating system while the other processors execute only applications. When an application
needs system services, it has to wait for the master processor to execute its request[Bac86]. This
approach suffers from low utilization of the available processors when processes are generating
a lot of requests to the operating system. In the worst case, all the application processors
are blocked waiting for something to do, while the master processor is busy processing many
requests. A master/slave approach does not scale up well to many processors since the master
processor becomes a bottleneck|[BB84]. A more desirable solution is to rewrite the UNIX
kernel to allow multiple processors to execute system code. When necessary, exclusive access
to system data can be guaranteed by explicitly coded mutual exclusion primitives such as
semaphores and spin-locks[JAvd(G86]. This solution has the disadvantage of requiring almost
the entire UNIX kernel to be reimplemented or modified in some way, but has been adopted by
many current vendors of multiprocessor UNIX systems[Enc89, Seq85b]. Like shared memory
interfaces, parallel programming interfaces for UNIX[Enc88, Seq85a, Doe87, SUN88, CD88] also

lack standardization and further aggravate the application portability problem.

2.3.4 Dynamic Extensibility

Some extensions to an operating system are dynamic, in the sense that they should not involve
redesigning or maybe even recompiling the system. These include extensions such as increasing
the number of memory or disk storage devices attached to the computer, adding new devices
and device drivers, adding new interfaces to these or existing devices, and changing operat-
ing system policies. An increase in the amount of memory or disk storage might necessitate

reevaluation of resource management/allocation policies and corresponding changes in the pa-
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rameters governing their enforcement. Adding a new device to a computer, and driver software
for it to the operating system, should have little if any impact of the rest of the system. Some
computer hardware, for example a network controller, even allow dynamic additions of new
devices without interruption of service] McM81]. Operating systems for such computers should
be able to provide the same capability, namely, the ability to add drivers for, and interfaces to,
these devices without even rebooting the computer.

Another form of dynamic extensibility arises from needs to alter policies on resource al-
location and management. An operating system should be able to adapt to changing policy
requirements without mechanisms having to be changed and, ideally, without even having to
reboot the computer. Policy changes should be as simple as changing a few system parameters

or replacing one policy unit with another.

2.3.5 Software Engineering Problems with Extensibility

Both static and dynamic extensions to an operating system place increasingly higher demands
on its design and implementation. Operating systems need to be constructed in a way that
they remain extensible enough to cope with changing requirements, while keeping the cost of
maintenance as small as possible. Often the original implementation of an operating system has
trouble supporting many desired extensions. This can be the result of either bad original design
decisions or poor implementations of those decisions. Likewise decisions that were appropriate
ten or twenty years ago may now be out of date. The problem can be aggravated by poor
documentation about the original design and implementation and by the potential lack of
availability of the original authors for consultation. With the rapid advances in computer
architectures currently underway, these situations are not likely to improve soon. It is possible
that UNIX is one system rapidly evolving past the point that the original design can support all
the desired additions. This would explain the current trend to build UNIX compatible systems
based on newer design and implementation technologies [L.S87, A*86, RAN88, OCD*88]. This
is not the fault of the original designers of UNIX as they had a very specific goal in mind and
were constrained by contemporary software engineering techniques. It is rather a fault of the
computing community pushing the original UNIX design too far. Portability considerations
make it desirable to preserve the UNIX interface; this allows programmers to use familiar

programs and tools. This in no way, however, means that the internals or implementation of
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UNIX need be preserved. Whether the interface of UNIX is good is not the issue here. Instead,
the point is that the internal structure of most UNIX implementations must be rethought and
redesigned. The goal should be to use modern software engineering techniques to redesign and
reimplement UNIX, other systems, and new operating systems in such a way as to minimize
problems with constructing maintainable, portable, efficient and extensible operating system
software. This thesis will show that object-oriented design and programming are such flexible

and efficient techniques.

2.3.6 Maintenance for Different Types of Operating Systems

The operating system software engineering problems discussed so far affect each type of operat-
ing system discussed in Section 2.2 differently. Portability is usually not a concern for embedded
systems since they are usually designed and constructed for a specific piece of hardware. Like-
wise, personal computer operating systems are often designed for a specific architecture, such
as the Apple Macintosh operating system[App88] or the IBM-PC operating system[Nor85].
However for the reasons stated above, multiprogrammed systems with a rich set of existing
applications need to be constructed in such a way as to remain portable across hardware vari-
ations. Extensibility for almost any form of operating system is important for the reasons
discussed above. Maintenance is a concern for any large body of software as well. Even em-
bedded systems will have maintenance costs associated with them. Efficiency is important for
any type of operating system. Thus, software engineering issues relevant to operating system
construction are orthogonal to the particular type of operating system although more complex
operating systems (protected, multiprogrammed, distributed ones for example) may be more

affected by virtue of their complexity.

2.4 Operating System Design Techniques

Many design approaches have been applied to structuring operating systems to address the
kinds of software engineering problems discussed in Section 2.3. Most attack operating sys-
tem problems by decomposing the system into smaller pieces, or modules, with well defined
interfaces. Webster’s dictionary defines a module as: “any of a set of units ...designed to be

arranged or joined in a variety of ways”[McK79]. Modularization is a major accepted technique
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to decompose and structure large software systems[Par72]. The key to a successful modulariza-
tion technique is to determine the correct granularity of these modules and to provide efficient
data exchange between modules.

The following sections survey a few common and historical approaches to the structuring
and modularization of operating systems. The techniques are roughly presented in chronolog-
ical order of their use. These techniques have evolved in response to advances in hardware
technology and improvements in software engineering techniques. Each section concentrates
on a particular design philosophy and identifies its problems in order to motivate the design

approach put forth in this thesis.

2.4.1 The Single Uninterruptable Monitor Approach

One of the earliest operating system structuring techniques is that of a single uninterruptable
monitor program with a single thread of control. This type of system, in effect, dispatches or
“calls” application programsin much the way that it calls functions within itself. An application
programs “returns” to the system under one of three conditions: an interrupt from a device
requiring service, a service request from the program to the operating system, or the program’s
termination. Once the call to an application program returns, the operating system services
the interrupt or request (or deletes the terminating program) and then resumes another (or
possible the same) program.

An operating system constructed as a monitor guarantees mutually exclusive accesses to
system information since there is only one thread of control allowed to execute the operating
system code at a time. While this thread of control is executing in the operating system,
interrupts are disabled, prohibiting all but explicit changes of control flow. This makes im-
plementation easier since the implementor can ignore such problems as mutual exclusion and
concurrent access to system data structures. The main problem of such a design is the lack
of scalability. The frequency of calls to the operating system from interrupts and application
service requests is proportional to the number of application programs and devices in the sys-
tem. As the number of calls to the system increases, the time during which interrupts are
disabled increases because the rising amount of time spent executing in the system routines.
This in turn increases the number of interrupts that can be lost, or held pending for a long

time, thereby decreasing I/O device throughput. A system structured to allow only one thread
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of control accessing system data must, on multiprocessor architectures, serialize simultaneous
attempts to enter the system as the result of interrupts. This results in a decrease in potential
concurrent execution. Decreases in potential concurrency are also seen as application programs
must wait for each other to enter and exit the system.

The monitor technique protects system data from interference, but at the price of scalability
and performance. From a software engineering point of view, this approach has many problems
as well. Such a system imposes no guidelines on how to structure its internals. Since all of
the functionality of the operating system is placed within a single module, maintenance is
severely impacted. The system internals are not divided into functions or sub-units that can
be separately developed and maintained. This reduces portability and extensibility. These

problems could be solved, however, with a good approach to further decomposing the monitor.

2.4.2 The Kernel Approach

The kernel* model of structuring an operating system is an attempt to remedy some of the
performance problems of the uninterruptable monitor approach, in particular, those of scalabil-
ity and device under-utilization. It also attempts to further decompose the components of an
operating system. This model treats all computational entities in a computer as processes, or
threads of execution. Examples are application program processes, interrupt handler processes,
and device driver processes. The kernel is primarily an interprocess communication module.
In the kernel model, an operating system is a set of concurrently executing system processes
that request services from this kernel. Applications are likewise viewed as sets of concurrently
executing processes that request services from the operating system processes via the kernel.
The kernel provides a minimal set of routines that perform the basic functions of interprocess
communication, process management, and interrupt processing. Higher level operating system
functions are built around the kernel by using processes. The kernel is responsible for schedul-
ing processes and directing interrupts to the proper system processes. Interrupts are disabled
while executing within the kernel, but since most of the operating system functions are moved
out of the kernel and into system processes, interrupts are enabled more often, thus improving

device performance. A kernel should be capable of processing multiple requests concurrently as

*Some designers have used the term nucleus.
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long as the processes are programmed to use mutual exclusion to access system data. Therefore
this approach is applicable to multiprocessor architectures.

A minimal kernel needs only to manage interprocess communication and direct interrupts
to the proper processes. Larger kernels may also create and delete processes, provide memory
management, implement the application interface primitives, and supply a wide variety of other
services. Kernels become more difficult to implement and maintain as they get larger.

The cooperating, concurrently executing process model is the most valuable contribu-
tion of the kernel model. The extra concurrency provided by this model improves on the
monitor approach. The idea of decomposing an operating system into a set of communi-
cating and cooperating processes increases modularity thus aiding portability and extensi-
bility. The problem of identifying which processes should handle which operating system
functions and further decomposing those processes, as well as the kernel itself, still remains.

However, the kernel model remains the basis for the construction of most modern operating

systems[A186, Che84, RAN88, Mul87, OCDT83].

2.4.3 Level Structured (Layered) Operating Systems

Layered systems, most notably THE[Dij68] and later VENUS[Lis72], attempt to decompose an
operating system by structuring it in small, easily understood, layers or levels. The processes
or functions of the system are separated into layers that provide successive abstractions of the
operating system. These layers are ordered by increasing level of functionality, and each layer
depends only on the previous layer in this ordering. Usually, the hardware is the lowest layer,
and the application interface is the highest layer.

Many early layered system divided an operating system into layers of processes performing
system functions. Habermann, Flon and Cooprider|[HFC76] argue that this makes it difficult
to separate the logical activities of processes from the processes themselves. They argue for
a functional hierarchy of layers in the system. In their design, layers are built to reflect the
functions in the system. Various processes in a system invoke these functions, but processes
are independent of individual layers. The lowest layer corresponds to the hardware instruction
set of the processor. Functions in higher layers can use functions from lower layers. Concur-
rent processes within the operating system can access functions at different layers within the

hierarchy.
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Layering aids in implementation, debugging and testing of the system. Layers enhance
portability; if lower layers hide the hardware, only these layers need to be changed when retar-
geting the operating system to new architectures. An implementor can ignore the implementa-
tion details of lower layers but still use their functionality when designing and debugging higher
layers. This improves maintenance. For example, some layered systems use as their lowest
layer the concept of an abstract machine representing an idealized computer architecture. This
reduces the portability problem to reimplementing the abstract machine for the available com-
puter hardware. Abstract machines also can represent real computer hardware as in the VM
operating system[MD74]. This allows multiple virtual computers to be simulated on a single
physical computer by supporting multiple concurrent copies of the lowest layer each sharing
the physical computer. Operating system software can be developed and debugged on any of
the virtual computers and, when ready, be run directly on the physical computer without any
changes.

The major difficulty with building layered operating system kernels is determining the layer
in which a process or function belongs. Since each layer may only rely on the processes or
functions provided by lower layers, careful planning is necessary. For example, in virtual memory
systems, the disk device drivers should be provided by a lower level than the virtual memory
paging mechanism since the memory paging mechanism must use the disk as a backing store.
But, the memory that the disk drivers use for I/O buffers must be coordinated with the virtual
memory management. Such circular dependencies are the most difficult problem in defining
the layers of an operating system.

Another problem with layered systems can be performance. If a layered system is structured
in such a way that a layer has access to only the layer directly beneath it, performance can
suffer as requests must traverse several layers to achieve a low level service. It is more desirable
to allow a layer to access the functionality in any of the layers beneath it.

Perhaps the biggest drawback to layered systems is that the granularity of the abstractions
it provides (the layers) are too coarse. However, layering is orthogonal to many other struc-
turing techniques. When further decomposed into servers, in the message-passing approach as
discussed in the next section, or into the objects in object-based system as discussed in the
following section, layers can substantially aid the documentation and high level understanding

of a system.
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2.4.4 Message-Passing Operating Systems

Message-passing operating systems are systems based on the kernel idea. They attempt to
further decompose an operating system’s structure. Message-passing systems use explicit send
and receive operations to exchange information (messages) between concurrently executing
processes. Fach of these processes (or often sets of processes) is usually viewed as a server
providing functionality to other client processes. References to servers are obtained from name
servers, which convert symbolic service names to references to servers implementing the service.

Each message from a client includes a request to the server and arguments specific to
that request. In a message-passing system, all communication and computation is achieved
by explicit message exchanges between clients and servers. Messages are sent to servers and
replies are sent back. This message exchange may be synchronous, in which case the sender does
not continue executing until the reply is received, or asynchronous, in which case the sender
continues to execute and awaits the reply whenever desired.

Processes executing on behalf of application programs are often just consumers of services
and may not provide any of their own. In message-passing systems the kernel is usually viewed
as a server as well. It can be composed of many processes; each executes on behalf of the
system to perform system management functions, for example, handling interrupts and creating
or deleting new processes. Processes desiring a service from the kernel send a message and
(optionally) await a reply just as they would do if requesting a service from another process.

Message-passing systems come in two forms, those that consider all message receivers to
be processes or servers directly, such as the V system[Che88, Che84], and those that consider
message Teceivers to be message ports read by servers, such as Accent|[RR81] and Mach[TR87,
R*87, Ras86]. In a message-passing system using ports, server processes poll selected ports
when ready to receive a message. In the other type of system, messages are sent directly to
a target process and are received the next time that process executes an “anonymous” receive
primitive. The receive is anonymous in the sense that the process simply receives the next
message queued for it. In a port-based system, the server process could selectively chose which
port to receive the next message from, giving more flexibility in assigning priorities to messages.

Message-passing systems work well in distributed environments. The only support needed

is to provide server identities that can be used independently of location and message send
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and receives that can span machine boundaries. In this way, processes on one machine request
services on another machine in exactly the same way they request services on the machine they
are executing on: by sending a message and awaiting a reply.

Decomposing the operating system into a set of servers increases both portability and main-
tenance. Portability is improved since only servers relying on machine specific details need to
be retargeted for new architectures. Maintenance is assisted by the decomposition of system
functions imposed by servers. One problem with such systems is that a message send/receive is
usually much more expensive that a normal procedure call. Since any message send can poten-
tially cross a machine boundary, arguments must often be copied rather than being referenced
off the stack of the sender of the message. Likewise, the synchronization between the sender and
the receiver imposes additional overheads. For example, a context switch may be incurred from
the sending to the receiving process. These performance problems often cause the model to
become inefficient for low levels of abstraction. Programmers then have to revert to traditional
programming methodologies. This results in two kinds of entities in a message-passing system:
the high level servers described by the model and modules of low level routines invoked with
traditional procedure calls. This lack of consistency in paradigm is undesirable from a mainte-
nance point of view. For example, a server providing memory allocation may need to update
the page tables for the current process. For portability and consistency, it would be desirable
to make each page table another server and have the memory allocation server send a message
to the page table server to update memory mappings. Only the page table server would need
to be reimplemented when retargeting the operating system to a new machine. The problem
is that the memory allocation server may have to make repeated requests to the page table
server. Since they are fundamental parts of the kernel, the page table server and the memory
allocation server are likely to occupy the same address space. The expense of multiple message
send /receives between them will be higher than just invoking functions directly to update the
page tables.

Many system designers have gone to great extent to minimize message sending costs. Shared
memory can minimize argument copying costs[Y*t87]. Having one process execute on the behalf
of multiple servers can reduce context switching costs. Since a high level abstraction likely makes
multiple requests on a low level abstraction, requests to low level abstractions are usually more

common than those to high level abstractions. Therefore, rather than starting with a complex
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scheme for handling high level abstractions that will not easily and efficiently handle the low
level cases, it would be desirable to start with a simple scheme for handling low level abstractions
that is efficient and will scale up to higher level abstractions. This allows a single paradigm to

be used throughout the construction of the system.

2.4.5 Object-Based Approach

Object-based approaches to operating system design replace the kernel model of communicating,
concurrently executing processes, with a collection of communicating, cooperating objects.®
Each object in the collection represents a particular logical entity of the system. Objects
can represent processes, memory ranges, communication channels, devices, and many other
operating system abstractions. Each object provides a set of operations available to other
objects in the system. These operations define the behavior of the object and the interface
provided to other objects. In this model, objects invoke such operations by sending messages to
other objects. These messages are conceptually similar to the messages in the message-passing
approach. The main difference is that sending a message to an object is always synchronous
and no explicit receive is needed.

This encapsulation of behavior in object-based systems closely parallels the software engi-
neering concepts of modular programming and data encapsulation. An object can send a mes-
sage to any other object as long as it has a reference to that object. Like the servers in message-
passing systems, objects can reside on different nodes in a distributed system. Examples of
object-based operating systems include: HYDRA[W*74], Eden[LLA*81], Emerald[JLHBS&7],
CLOUDS[Spa86], CEDAR[SZBHS86], the Intel iAPX432 architecture[Int81], Amoeba [Mul87,
TM81, TvR85], and CHORUS[RANS&S, Mar88, BMRS&5].

Object-based approaches are more data-driven than message-passing approaches to operat-
ing system construction. They separate the abstractions of a system into different modules (ob-
jects), each with a well defined function and interface. Objects address other objects in a system
by means of a reference or capability to the object. The reference can define what permissions
the invoking object has with respect to the object on which it is operating. These references

can be as simple as direct pointers to other objects, in effect providing no permission enforce-

® A more complete definition will be given in Chapter 3, but for now it suffices to say that an object is a data
encapsulation consisting of a set of state variables and a set of operations to access and modify those variables.
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ment, or as complex as capabilities in full protected capability-based systems[KL87, MB80].
In a capability-based system, only trusted objects can modify and distribute capabilities. To
maintain security, capabilities can only be updated by trusted objects. Some systems provide
hardware support for this protection, while others rely on indirection through a trusted manager
of capabilities.

Object-based approaches address many of the operating system problems discussed in the
introduction. Sets of objects can be used to abstract the hardware and thus increase portability.
Objects also represent a small enough encapsulation to improve maintenance and documenta-
tion.

The main potential problem of object-based systems is, like message-passing systems, one
of efficiency. Efficiency in an object-based system is a function of the expense, or “weight”, of
objects and the implementation of message sends between objects. Object-based systems span
a spectrum of implementations. At one end of this spectrum are systems like CLOUDS[Spa86]
and Elmwood[MLC*87] that are, in a sense, remote procedure call (RPC)[BN84], object-based,
message-passing systems. Such systems use the object/message send paradigm to structure the
servers of message-passing systems. Objects encapsulate servers and object messages structure
the messages exchanged between clients and servers by automatically providing the opcode and
defining the types of parameters. The object interface gives structure to the interface that
the server presents to its clients and defines the messages sent between the client and server.
However, such systems suffer the same performance penalties as message-passing systems.

At the other end of the spectrum are systems like Smalltalk[Gol84] that, rather than using
an explicit send/receive paradigm to implement message sending, transfer control between ob-
jects by explicitly weaving threads of control from object to object. In such systems, objects are
usually passive. Message sending is implemented with traditional procedure calls. The thread
of control of the invoking process enters the object to perform the operation. This reduces
synchronization and context switching costs and involves no added expense of argument copy-
ing. The one problem with such systems is that, without the underlying message send/receive
paradigm, they are difficult to extend to distributed cases. Section 8.8 discusses this further
and proposes a solution.

Systems based on multiple monitors [Hoa74, Bri85, Bri73] for data encapsulation, like

Pilot[LR79], have a type of object-based design at this end of the spectrum as well. Rather
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than a single monitor like the approach discussed in Section 2.4.1, these systems use multiple
monitors, each encapsulating some system data. Like objects, monitors provide a set of opera-
tions (monitor procedures) to access an otherwise inaccessible set of data. Invoking a monitor
procedure is done in a similar way to invoking a normal procedure. The unique contribution
of monitors is the enforcement of mutually exclusive access to the data. A process invoking an
operation on a monitor is not allowed to enter the monitor until any other process in the moni-
tor exits it. Local operations are provided by monitors for a process to exit the monitor until a
specified condition occurs and for another process to signal that condition’s occurrence. Camp-
bell and Kolstad[CK79] propose a similar object-based scheme but provide a more generalized
mutual exclusion mechanism by using path expressions[CH74].

Object-based systems address the software engineering problems for operating systems by
decomposing its functionality into small modules (objects) with well defined interfaces. If
objects and message sending can be made efficient enough, performance will not be a problem.
A disadvantage of object-based systems is that objects, like servers in message-passing systems,
are often designed to implement general purpose algorithms in order to provide the desired
interface under a large variety of applications. The general purpose nature of such objects may
cause performance to be sacrificed for generality. Obviously, a new object can be implemented to
perform a specialized or optimized service. However, it is difficult to program the commonalities
this object may have with other, more general, objects in a way that when additional features
are added to the general objects, they are also automatically made to the specialized object.
What is needed is a way to allow efficient specialization of objects while allowing sharing of
common features between the original and the specialized object. Some of this problem can be
alleviated by allowing one object to delegate an operation to another object. There is, however,
no convenient language or system enforced manner to structure such delegation. The burden

is place entirely on the programmer.

2.5 Summary

Although they represent many important ideas, the techniques presented so far all fail to
address fully the operating system software engineering problems discussed in Section 2.3. The

single uninterruptable monitor approach suffers from the obvious disadvantage of placing all
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the functionality with a single module. Although additional structuring techniques could be
applied to further decompose the monitor, it is only suitable for small systems since it does not
scale up well due to competition to enter the system.

The kernel approach addresses the structuring problem by breaking an operating system
into a set of cooperating, communicating, concurrent processes. This approach helps by sep-
arating an operating system into a set of modules (the kernel proper and the processes) but
fails to aid in specifying the internals of the kernel itself, the functions the processes should
perform, and the information that should be exchanged between communicating processes. In
theory, only the kernel should need to be changed in order to move the operating system to
new architectures. In practice, however, kernels are much more complex than the simple model
describes. Issues such as memory and device management usually pervade the design of ker-
nels and decrease their portability substantially. Likewise, the functions the processes should
perform and the information that should be exchanged between communicating processes is
not specified. Kernels do, however, solve the mutual exclusion bottleneck present with the
uninterruptable monitor approach.

Layered, message-passing and object-based systems attempt to provide further structure to
kernels. Layered systems structure operating systems by separating the processes or functions of
the system into layers that provide successive abstractions of the operating system. The major
difficulty with building layered operating system kernels is determining the layer to which a
process or function belongs. Since each layer may only rely on the processes or functions
provided by lower layers, careful planning is necessary. Layering is, however, a useful high level
structuring technique that can be used orthogonally to other techniques.

Message-passing solutions use explicit send and receive primitives between processes and
servers to achieve communication and computation. In such a system, even kernel services are
obtained by sending messages and awaiting replies. The overhead of message send and receives
can, however, be prohibitive and force designers to abandon the paradigm at frequently used
interfaces.

Object-based architectures organize the system as a network of cooperating objects rather
than layers of processes or functions. Processes are then just one type of object; memory,
devices, and communication channels are represented by other objects. Objects can solve

the circular dependency problems in layered systems since object communication topologies
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can be arbitrary. If objects and message sending can be made inexpensive enough, object-
based systems offer desirable software engineering advantages in terms of encapsulation and
modularity. A mechanism to allow specialization in a flexible manner is still, however, lacking.

The object-oriented solution proposed by this thesis builds on the lightweight object-based
approach and improves it. It uses object-oriented programming to add a classification mech-
anism as well as dynamic binding of operations to objects. It likewise provides mechanisms
to specialize objects while maintaining commonalities between similar objects. The resultant
systems provides for very lightweight and flexible abstractions and encapsulations that can be
used uniformly throughout the system. Before the presentation of this solution can be fully
detailed, a discussion of the object-oriented programming paradigm is necessary and will be

undertaken in the next chapter.
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Chapter 3

The Object-Oriented Paradigm

“No doubt about it — a new technique called ‘object-oriented programming’ has be-

come all the rage in the world of software.”

This quote is from an article by Lee Gomes under the headline “Programmers do it without
a definition” in the San Jose Mercury News, Feb. 7, 1990.! The quote is very true but,
unfortunately, what is perhaps more true is the headline. This chapter will attempt to define
object-oriented programming sufficiently for the presentation of the work in the rest of the

thesis.

3.1 Principles

The following sections discuss four essential principles of the object-oriented paradigm relevant
to the construction of object-oriented software in general, and to this thesis in particular. These

principles are: data encapsulation, data abstraction, polymorphism and inheritance.

3.1.1 Data Encapsulation

Normally in a computer program, separate invocations of functions have no way of affecting
each other without saving information in state variables preserved externally from one function
invocation to the next. This makes it difficult to build software modules since state variables

either need to be referenced globally or passed explicitly as arguments to each invocation of

Many thanks to Mike Powell for giving me this amusing article.
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a function. Making such variables globally accessible prevents a software module’s boundaries
from being enforced since any arbitrary function can refer to this data as well. Data encapsula-
tion techniques[AR84] are used to increase program modularity, maintainability and reliability
by localizing data together with functions that operate on them and restricting access to the
data exclusively to these functions. Data encapsulation techniques allow state to be preserved
between invocations of functions. This state is stored in the encapsulated data.

Own data in Algol[Nau63] and static data in C[KR78] limits access to a particular function.
Packages in ADA[Uni81], named common in FORTRAN[CDGT70], block scoping in languages
like Pascal[JWR89], and static file scope in C limit access to a set of functions. The latter
is often more desirable since modularity considerations make it important to allow a set of
functions to share a common set of data that is hidden from other functions. The enqueue and
dequeue operations on a queue, the push and pop operations on a stack, and the add and lookup
operations on a database are all examples of sets of operations that share common (localized)
data. FEncapsulation techniques can provide more than just data hiding. Monitors[HoaT74,
Bri85], for example, are a form of data encapsulation that provides for synchronization and
mutual exclusion of accesses to the encapsulated data as well.

The object is the unit of data encapsulation in the object-oriented paradigm. An object
is a simple encapsulation consisting of a set of variables and a set of operations used to alter
and access them. The variables will be referred to as the object’s instance variables. An
individual operation in the operation set will be termed a message the object accepts. Invoking
an operation on an object will be described as sending a message to the object. The entire set
of messages accepted by an object will be termed its signature.?

Messages used in the context of the object-oriented paradigm should be contrasted with
messages in the message-passing systems discussed in Section 2.4.4. The phrase “send a message
to an object” is only a statement of how the object-oriented paradigm should be conceptually
viewed. It does not imply the implementation of message sends is actually achieved by creating
messages that are exchanged via explicit send and receive primitives between an object and
the sender of the message. What sending a message in the object-oriented paradigm implies is
that a method (the code performing the operation the message describes) is looked up based on

the object and invoked. Sending a message to an object, therefore, results in a method lookup

2The term protocol is also often used.

29



to find the proper method and then a method invocation to call the method. In most object-
oriented languages, method invocation is achieved with traditional procedure calls. In other
words, a message is part of an object’s interface, while a method defines the implementation of
the message.

Like other data encapsulation techniques, objects preserve state between message sends
that invoke their methods. This state is preserved in an object’s instance variables. Ideally, an
object’s methods provide the only means by which other objects in the system can access its
state and perform operations upon it. The difference between objects and other data encap-
sulation techniques is mainly one of perspective. In object-based data encapsulation schemes,
each object is identified by some name, or reference, to which messages are sent. In other data
encapsulation schemes, the functions are often the “first class” entities. In these schemes, data
analogous to an object’s instance variables are explicitly passed to a function or referenced in
an enclosing scope. Programming with objects is, therefore, a more data driven encapsulation

approach than function based encapsulation schemes.

3.1.2 Data Abstraction

Building models to reduce problems to less complex ones is a common problem solving technique.
Models use abstractions of entities being manipulated. These abstractions allow irrelevant
details to be ignored and focus to be placed on the essence of a problem. Abstractions also
allow the details of unstructured entities to be hidden by a framework through which they can
be manipulated easily.

Computer programs can be viewed as models. The values operated on by statements in a
computer program are abstractions of the entities being modeled by the computation. In the
object-oriented paradigm, all values are objects. Many objects represent similar abstractions
and, therefore, share similar or identical behavior. In order to express the commonalities
of identical objects, the object-oriented paradigm introduces the concept of a class. A class
is a “template” to create a kind of object. It defines the instance variables, signature, and
implementation of the messages in the signature (methods), for instantiations, or instances of

the class. A class is, therefore, a data abstraction that simultaneously specifies the interface
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and encapsulates the implementation of each of its instances. ® Classes are similar to clusters
in CLU[LAB™81] and object records in Path Pascal[CM78].

The methods of a class can reference the instance variables that the class defines. These
instance variables are bound at runtime to those of a particular instance of the class.* This
runtime binding of class methods to the data they operate on gives a class a “cookie cutter” like
behavior. Late binding is also what distinguishes object-oriented programming from other ab-
stractions and encapsulation techniques. When programming with classes, functions (methods)
are bound at runtime to the data (instance variables) they operate on. With other encapsula-
tion schemes, data are usually compile time bound to functions. This means that there can be
only one instance of such an encapsulation.

Expressions within a program generate values which are usually assigned to variables or
used in other expressions. Type checking is used to determine whether values generated by
expressions are used in the proper context[Set89]. Most object-oriented languages rely solely
on signature equivalence for type checking. Signature equivalence means that the signature (or
a subset of the signature) of an object used at a location in the program matches the signature
required. A type safe operation is one where a message being sent to an object is in that object’s
signature.

There are two forms of type checking: static and dynamic[Set89]. Statically typed languages
require compile time determination from the programs source of whether a value conforms
to the type implied where it is used. For example, that 4+ is applied to a pair of integers,
reals, or perhaps a combination of the two. Usually, static typing is assured by requiring the
programmer to specify a type for each variable and function result and having the language
specify the types which result from the application of built in operators and functions. In
object-oriented programming, these types are specified as signatures which any object assigned
to the variable must have. In many object-oriented languages, this signature is specified with
a class. The signature of this class then implicitly defines the type of the variable. Other

object-oriented languages allow signatures to be specified independent of classes[JGZS88].

® As will be seen in the next section, this is not strictly true. Inheritance allows classes to delegate some or
all of this responsibility to other classes.

*In most languages names like self or this usually refer to this object within the context of the implementation
of a particular method.
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In Dynamically typed languages, runtime checking is used to check a value’s conformance
to a particular type within a particular context. Dynamic typing, in the context of object-
oriented programming, requires that variables are typeless and can reference objects of any
type. Dynamic and static typing have software engineering and performance tradeoffs. The
explicit type information given for variables in a statically typed language can aid in both the
documentation and compilation of the program, while dynamically typed languages may lead
to code that is more flexible and easier to reuse. Dynamically typed languages are usually less
efficient since they lack type information to guide compilation. Type inferencing systems[Gra89)
can improve the efficiency of dynamically typed languages by allowing types to be determined
at compile time and corresponding optimizations to be made.

Orthogonal to static and dynamic typing is whether a language is strongly or weakly
typed[Set89]. Strongly typed languages allow only type safe assignments to be made — the
value being used always conforms to the type required. Weakly typed languages either do not

check types or allow the checking to be overridden.

3.1.3 Inheritance and Subclassing

Classes arise naturally from the similar behavior of groups of objects. Likewise, different classes
may have many messages and methods in common. Class inheritance, first introduced in
SIMULA[BDMNT73], is a technique to describe this commonality. Inheritance allows a set
of classes to share parts of a common interface (signature) and perhaps parts of a common
implementation (methods and instance variables). Subclassing is the best known inheritance
mechanism. With subclassing, part or all of the signature, methods and instance variables of
a class can be inherited from ancestor classes. Single inheritance allows one ancestor class.
Multiple inheritance allows for several ancestor classes. Inheritance relations between classes
form directed acyclic graphs and, therefore, are usually termed class hierarchies. The child
classes of a given class in a hierarchy are usually termed its subclasses and are said to be
derived from the class. The ancestors of a class are usually termed its parent or super classes.

Delegation[Lie86], where objects forward messages to other objects, is another way to inherit
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behavior. Subclassing is the more commonly used sharing technique and is concentrated on in
this thesis.’
Inheritance makes customization and incremental refinement possible in a structured man-

ner by allowing a class designer to address the problem put best as:
“The class I need is almost like the one I have, except for...”.

The implementor of a new class has the option of augmenting the inherited signature with
additional messages and/or redefining the implementation of any inherited methods. Meth-
ods corresponding to added messages can likewise either be specified by the class or left to
subclasses of the new class to be defined. Classes that define only a signature and leave the
implementation to other classes to define are usually termed abstract classes. Classes that de-
fine an implementation for a particular signature are termed concrete classes. Abstract classes
define a data abstraction, concrete classes define or refine implementations of this abstraction.®
In practice, many abstract classes fall somewhere between purely abstract and concrete; they
often provide methods for some, but not all the messages in their signatures.

The separation of interface from implementation provided by using abstract and concrete
classes is important when designing for portability. Abstract classes can define interfaces that
are implemented by different concrete classes for different applications. The separation also
makes the system easier to understand since abstractions can be designed separate from their

implementations.

3.1.4 Polymorphism

Sending a message to an object makes certain assumptions about the object. In particular,
it assumes that the object’s signature contains the message being sent. Violations of this re-
quirement can be detected at compile-time in statically typed languages and at runtime in

dynamically typed languages. For example, an object referenced as a File” will be expected

®There is even argument that delegation and subclassing are simply different views of the same
principles[Ste87].

®Because of this, often when describing object-oriented programs, designers use the name of an abstract class
when they mean that class or any concrete classes implementing the interface.

T A convention used throughout the rest of this thesis is that class names will have their first letter capitalized,
while message names will not and will have their names in sans serif font. Another convention will be to use class
names in bold face type. Plural nouns will be used to indicate collections of instances of a class. The indefinite
article will be used to indicate a single instance that belongs to the collection. For example, rather than using
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to accept read, write and seek messages. Likewise, a Directory would be expected to ac-
cept addFile, removeFile and lookup messages, and a BitmappedScreen setPixel and clearPixel
messages.

Since the actual parameters to a method may be of many different types, the method
may behave differently depending on the arguments. This is implemented in object-oriented
programming by the delayed binding of messages to the methods that implement them. In
particular, when a message is sent to an object, the actual method invoked is not determined
until runtime. It is determined by the object’s class. This runtime method lookup underlies
the abstract/concrete class structuring techniques discussed in the last section.

The set of messages sent to an object in a given context is usually only a subset of the
messages defined by the object’s class. This is especially true of objects received as parameters
to a method. For example, a method with a formal parameter to be used as a file from which
to read data might only send read and seek messages to the actual parameter. The actual
parameter object may have many more messages defined, such as write, close, etc. Likewise,
different implementations of file objects may exist in the form of instances of different classes.
Any of these would be acceptable arguments to the method in question. A method that can
accept arguments of many different types and behave differently is said to be polymorphic with
respect to those arguments.

The polymorphism discussed so far is more specifically a form of inclusion or bounded
polymorphism[DT88]. Inclusion polymorphism restricts polymorphism to objects that share a
common representation or signature. Signature-based inclusion polymorphism is prevalent in
object-oriented languages. For this reason, unless otherwise specified, the rest of this thesis will
use unqualified polymorphism to mean signature-based inclusion polymorphism. In signature
based inclusion polymorphism, if the target object has the desired signature as a subset of its
messages then it can be used in a given context.

Other forms of polymorphism include: functional polymorphism and operator overloading.
Function polymorphism is where the type of the arguments to a function are irrelevant (the
identity function is the classic example). This is also termed parametric polymorphism in

[CW85], although Danforth[DT88] distinguishes parametric polymorphism as the case where

“instances of class Widget”, “Widgets” will be used when referring to objects instantiated from the Widget
class. Likewise, “a Widgit” will be used to indicate the singular case.
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types are explicitly provided to a function, and functional polymorphism as the case where
they are implicitly determined. Operator overloading is the classic form of polymorphism seen
in traditional programming languages. The way in which the built in 4 operator can oper-
ate on integer/integer, real/real, integer/real or real/integer arguments in most programming
languages is an example of operator overloading.

Polymorphism of formal parameters has restriction. Each formal parameter of a method has
an implicit signature, S, that consists of the set of messages that will be sent to the parameter
within the method and within any method to which the argument is further passed. The
argument used to satisfy a polymorphic parameter must satisfy the requirement that it accepts
the messages defined by that parameter’s 5. In statically typed object-oriented languages, the
signature of every argument is explicitly specified as one having all the messages in S as a
subset of its messages. In a dynamically typed language, any object having the messages in
S as a subset of its messages can be used as an argument, but the checking is deferred until
runtime.

Polymorphism allows for a large degree of flexibility in design and reconfiguration of object-
oriented software. It is crucial to designing reusable code. Polymorphism allows the addition of
new components and the replacement of existing components since new classes implementing
old signatures can be used with existing code that expects those signatures. For example, if
an object having a file-like signature (read, write, and seek operations) is needed in a certain
application, an instance of any class defining these methods would suffice. The actual object
could be a local file, remote file, disk drive, or tape drive. Aslong as it has the desired signature,
the particular kind of object is unimportant and irrelevant to the code using it.

Because object-oriented languages use signature equivalence for type checking, different
restrictions can be placed on the polymorphism of the parameters of methods. Dynamically
typed languages implement polymorphism in its pure form as discussed so far. This is because
any actual argument object will be checked for type conformance at runtime. Statically typed
languages come in two forms: those that specify formal parameter types as classes, and those
that specify formal parameter types as signatures. Statically typed languages that specify
formal parameter types as signatures can implement polymorphism in its pure form. Since
in a statically typed language the type of all values can be determined, the signatures can

be compared at compile time to check for conformance of the actual parameter to the formal
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Figure 3.1: Types and examples of programming languages

parameters specified type. Statically typed languages that specify parameter types indirectly
with a class implement a restricted form of polymorphism. Instances of a specified class or any
subclass of that class are the only acceptable arguments, even if instances of other classes might

have the signature desired. This behavior will be termed inheritance polymorphism.

3.2 Definitions

The following sections add two definitions necessary for the presentation of the work in this

thesis. These are definitions of an object-oriented language and of an object-oriented system.

3.2.1 Object-Oriented Language

Wegner[Weg87] defines an object-oriented programming language as an object-based language
that supports both classes and inheritance (see Figure 3.1). This definition is in some ways too
simple as it does not explicitly mention the need to support polymorphism, which is essential

to achieve the benefits of using object-oriented programming. By not using one feature (virtual
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functions), C++[Str86], a common object-oriented language, would still meet this definition of
object-oriented. However, it would lack polymorphism since there would be no runtime binding
of messages to methods. A better definition is, therefore, that an object-oriented language fully
supports programming in the object-oriented paradigm by providing objects as the unit of data
encapsulation, classes as the unit of data abstraction, inclusion polymorphism, and some form
of sharing of interfaces and method implementations, either by delegation or inheritance.
Wegner cites ADA, Modula, CLU and Actor languages[Agh86] as examples of object-based
languages (but not object-oriented), C++ and Smalltalk[ GR83] as examples of object-oriented
languages.® Other languages fitting the definition of object-oriented include Eiffel[Mey88],
Trellis/Owl[SCB*86], SIMULA[BDMN?73], CLOS[DG&87] and Modula 3[CDG*89].

3.2.2 Object-Oriented System

A software system will be defined to be a body of software that is constructed to provide
service to other software that relies upon it. A software system must provide an interface to
other software that will use the services it provides. Usually this interface takes the form of
a small set of subroutines or functions that, when invoked, request services from the system
and/or return results. Software systems are distinguished from simple programming libraries
by preserving state between invocations of their interface functions, and by interface functions
affecting each other’s behavior. Operating systems are perhaps the best examples of software
systems. Systems providing windowing capabilities on a bit-mapped screen or a database with
access/update routines are other examples.

An object-oriented software system will be defined by two characteristics. First, an object-
oriented software system should be constructed using object-oriented techniques. This means
it should be implemented as a dynamic collection of objects, where each object is an instance of
some class representing a logical entity the system is modeling. Inheritance and polymorphism
should be used to organize the classes and their interrelations. In particular, polymorphism
and inheritance should be used to facilitate code sharing, interface sharing, code reuse, and

reconfiguration of the system. To simplify using inheritance and polymorphism, an object-

8Many object-oriented languages implement the paradigm with varying degrees of completeness. C++ for
example, allows accesses to an object’s instance variables by functions other than the object’s methods. This
violates the encapsulation dimension of object-oriented programming.
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oriented system should be implemented in an object-oriented language. Second, an object-
oriented system should provide its services by exposing a select set of constituent objects to
external (dynamic) message sends. Taking the windowing system as an example, representative
objects might be a window, a pointing device, a title bar, or a scroll bar.

A object-oriented system needs to provide a mechanism for applications to obtain references
to service objects and to send messages to them. Sending messages to objects replaces the
interface functions of a traditionally structured software system. Such a system should also
allow additions to the system to be made by inheritance from existing classes and it should
support the polymorphism achieved by the late binding of message sends to methods. In short,
an object-oriented system is open and extensible within its object-oriented framework.

The Smalltalk environment[(Gol84] is perhaps the archetypal object-oriented system. It is
a collection of objects that provide a complete programming environment, it is written in an
object-oriented language (Smalltalk itself), and it allows new application software written in
the environment to have access to any other object already in the environment. The limitation

of Smalltalk is that all applications that exist in the environment must be written in Smalltalk.

3.3 Summary

In summary, four important features of the object-oriented paradigm are:

o Data FEncapsulation to increase program modularity, maintainability and reliability by
localizing data together with functions that operate on them. Data encapsulation in the
object-oriented paradigm is focused on an object identified by a name, or reference, to

which messages are sent.

o Data Abstraction to identify the types in a program. Data abstraction in object-oriented
programming is directed at identifying classes to create replicated instances of objects

with similar behaviors.

o Inheritance to allow code sharing (reuse) between classes and the enforcement of common

interfaces.

o Polymorphism to provide code reuse by allowing methods to be written that take objects

of many different types as arguments.
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An object-oriented language is a language that provides support for these four features. An
object-oriented system is a software system designed and constructed using the object-oriented
principles and implemented in an object-oriented language, and that provides an interface to its
components (its objects and classes) in an object-oriented fashion (sending messages to them).

Using objects as an encapsulation technique is simply good programming methodology.
Likewise, using classes as an abstraction technique is good design. The object-oriented principles
of inheritance and polymorphism make programming in the paradigm worthwhile. Combined,
they provide for sharing of common interfaces, code reuse, customization, and optimization.
They can help address the problems of operating system portability, maintainability, and ez-
tensibility discussed in Section 2.3. This is the concentration of the next chapter. It defines an
object-oriented operating system and outlines the benefits of constructing such systems. The
remaining chapters evaluate these benefits in light of the experimental system mentioned in

Chapter 1.
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Chapter 4

Object-Oriented Operating Systems

The previous chapters have concentrated on the necessary background definitions and principles
for the presentation of the rest of this thesis. This chapter turns to my primary concern,
namely, the application of the object-oriented paradigm to operating systems. First, I give
the definition of an object-oriented operating system assumed in the rest of this thesis. I will
use this definition to characterize the experimental system proposed in Chapter 1 and help
distinguish this work from others. Next, I present guidelines for, and the benefits of, applying
the object-oriented principles discussed in Section 3.1 to solve the operating system design and
construction problems discussed in Section 2.3. Finally, I conclude with a short introduction
to the experimental system itself. In the following chapters I will present this system in detail,
analyze its performance, and discuss its success at addressing the problems facing operating

system software set forth in the introduction.

4.1 Definition of an Object-Oriented Operating System

First, and foremost, an object-oriented operating system is an object-oriented software system
as defined in Section 3.2.2. Like any object-oriented system, all entities in an object-oriented
operating system are represented by objects that are instances of representative classes. This
includes encapsulations of hardware devices, traditional operating system entities such as pro-
cesses and files, system data structures managing resource allocation and management, system
policy modules, and, in particular, low level operating system data structures such as page

tables and device control registers. FExamples of candidate classes for such objects include:
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Figure 4.1: Method invocation in an object-oriented operating system

Processor (to represent a physical processor), Process (to represent a logical thread of con-
trol), PageTable (to represent a hardware page table), VirtualMemoryRange (to represent
a range of contiguous memory), Scheduler (to represent a process scheduler), File (to repre-
sent a permanent storage file), DeviceRegister (to represent a physical device register), and
PhysicalMemoryFrame (to represent a physical memory page frame).

Operating systems provide a set of application interface primitives to allow delayed binding
of application requests to the operating system functions that implement desired services and
to insure integrity of system data and functions. The main feature distinguishing an object-
oriented operating system from traditional operating systems is that, like any object-oriented
system, it provides its primitives as message sends to system objects. This implies that sending a
message in an object-oriented operating system has one of three characteristics (see Figure 4.1).
All message sends within the system itself (on the system side of the system /application barrier)
behave as described in Chapter 3, the corresponding method is invoked with a normal procedure
call. All message sends within an application behave likewise. The interesting case arises when
an application sends a message to a system object. The invocation of the corresponding method
must cross the system/application barrier to provide the protection and dynamic binding to

system services characteristic of the barrier. Unprotected object-oriented operating systems can
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implement this with an extra indirection on the method invocation associated with a message
send to a system object. A protected object-oriented operating system must implement method
invocation on system objects in such a way that privilege levels can be crossed in a transparent
manner (Chapter 5 describes several ways to implement this).

An object-oriented operating system needs a naming mechanism to provide applications
with references or capabilities (see Section 2.4.5) to system objects. This is similar to how
references to servers must be obtained in message-passing systems. One solution is to provide
every application with a predefined reference to a name server object that maps symbolic names
to references. Queries to this object return references to other objects, that in turn provide
specific system services. The name server defines the set of all system services available to
an application in the form of a set of objects. The classes of these objects, in turn, define the
application interface of the operating system for this application. This interface can be extended
or reduced dynamically by adding objects to, and removing object from, an application’s name
server.

Object-oriented operating systems may impose static or dynamic typing on system object
references. Typing can be integral to the implementation of the name servers. In a dynamically
typed object-oriented system, queries to a name server require only the name of the object
and return a reference to the object if it exists no matter what the type of the object. Type
checking is deferred until messages are sent to the object. Statically typed systems do not allow
messages to be sent to untyped references. The type of the object being referenced must be
confirmed before message sends are allowed. Support for static typing can be achieved in two
ways. First, name servers can provide untyped references to objects, but the references are
not usable until they are narrowed to a particular type. After narrowing, a new reference is
constructed that may be used as the target of a message send with no further checks. If the
object is not of the proper type, the narrow operation should fail. Second, untyped references
can be prohibited. The type of the object being looked up can be included as an argument to
the name server query operation. The name server will only return a reference if an object of
the given name exists and it is of the type requested. In this way, once a reference is obtained,
it can immediately be treated as a typed reference and message sends can proceed normally.

This is how the experimental system described in this thesis implements its interface.
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4.2 Advantages of Object-Oriented Operating Systems

The previous section defined an object-oriented operating system, this section concentrates on
the advantages of designing and implementing object-oriented operating systems. It focuses on
how such systems address the problems of operating system portability, efficiency, maintainabil-
ity and extensibility discussed in the introduction. During the presentation of the experimental
system proposed in Chapter 1 in the following chapters, concrete examples of the techniques

discussed in the following sections will be given to support these claims.

4.2.1 Portability Advantages

When trying to design portable operating system software, it is important to isolate dependen-
cies on particular devices or architectures in modules that are separate from, and opaque to,
architecture independent portions of the system. These architecture dependent modules provide
an interface to the entity that they are abstracting and encapsulating. They allow program-
mers to design and implement the rest of the system in such a way as to only rely on using this
interface, while remaining unaware of its exact implementation. Ideally, such modules can be
reimplemented when the software is retargeted for a new architecture without any modifications
to the rest of the system. This allows architecture independent portions of the software to be
reused as the system is retargeted to new architectures. If this is to be true, each architecture
dependent module created as the software is retargeted for a new architecture must have the
same interface as the modules for other architectures. Modules representing hardware abstrac-
tions create a platform upon which the rest of the operating system can be constructed much
like the virtual machines discussed in Section 2.4.3. In particular, they can be used to represent
hardware entities that might differ in detail from architecture to architecture, but still perform
a similar function. Examples are page tables, processor registers and device controller registers.

Object-oriented programming provides a convenient framework within which to support
such needs. Abstract classes can be used to define the signatures (interfaces) of such mod-
ules while concrete classes can implement these signatures for various architectures. Creating
abstract classes to define interfaces to architecture dependent entities allows operating system
algorithms and data structures to be constructed without detailed knowledge of the specific

hardware being used. Polymorphism allows code that relies on the interface to use instances of
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any of the concrete classes implementing the signature as target objects. If the abstract interface
is properly defined, only a new concrete class needs to be created to encapsulate architecture
dependencies when retargeting the operating system to new computer hardware.

As a specific application of this technique, consider the page tables used by the dynamic
address translation hardware of many architectures. A PageTable class can be constructed to
abstract a hardware page table. Its signature should define the essential operations on a page
table. For example, likely messages for such a class to accept are addTranslation( virtualAddress,
physicalAddress ), removeTranslation( virtualAddress ) and getPageSize(). Each address space can
use an instance of a concrete class implementing this signature to represent its virtual memory
mappings. This form of abstraction allows such details as where particular bits in a page table
mapping entry lie, or whether the page table is one, two or N leveled, to be isolated from
other objects which reference and manipulate page tables. Concrete classes can implement the
PageTable signature for a particular hardware’s page tables (for example VAXPageTable
or 68000PageTable).

As another example, consider the interface provided by a device driver for a mass storage
disk device. An abstract MassStorageDevice class with read, write and seek messages might
be sufficient. This signature can be implemented for various kinds of hardware disk devices by
concrete classes. The complexity of the concrete implementations of the interface will depend
on the particular hardware device. Intelligent disk controllers with firmware device drivers
will need only minimal classes to encapsulate their firmware defined operations. Hardware
supporting only direct access to a disk controller’s registers may need a complex class that
manages disk head seeks, data transfer initiations, and interrupt responses to such transfers.
This complexity can, however, be completely hidden in the concrete class. System engineers
who specialize in writing and designing such software need only be told of the abstract interface
needed. Their particular expertise and knowledge can be applied directly to creating a concrete
class implementing the signature. They are freed from being forced to understand the client

software using their classes.

4.2.2 Code Sharing Advantages

As discussed in the last section, most operating systems contain machine dependent modules

that are reimplemented for each target architecture. Traditionally structured system usually
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specify such modules in terms of a set of operations (functions) to be provided. However,
without inheritance, similar implementations of this interface must be independent and have
no way to share common code. For example, the Mach operating system’s pmap system[R*87]
is such a module definition. By their very nature of being machine dependent, the eighteen
operations that the pmap system defines need to be reimplemented, or at least modified, for
each architecture to which Mach is retargeted. Implementations for similar architectures have
no convenient way to share code. Even interface sharing is only by convention and not enforced
by any compiler or language support.

The code sharing and reuse possibilities facilitated by class inheritance can easily solve
this problem. In particular, concrete subclasses implementing abstract signatures need not be
totally unrelated. Often a new device or processor architecture will be only a little different from
an existing one. Similar architectures should be expected to result in similar implementations.
Commonalities can be abstracted into a new class and the differences can be represented by
subclasses of this class.

Returning to the page table example in the previous section, consider two architectures that
both use similar page tables and have the same size pages. It is likely that the placement of a few
bits in a page table entry may differ between these architectures, but the majority of algorithms
doing page table management will likely be identical. Programming this commonality in the
object-oriented paradigm is simple. A new abstract class meeting the PageTable signature can
be created to encapsulate all the commonality for handling the similar architectures. Subclasses
of this class can each encapsulate specifics about a particular architecture. All these classes
still have the PageTable signature and, therefore, instances of any of the (concrete) subclasses
can be used anywhere an instance of such a representative class is expected. The common code
between both architectures is shared through the superclass. As an added benefit, any changes
made to the superclass, for example a bug fix or performance improvement, will automatically
get inherited by the concrete subclasses. This allows all the classes to take advantage of the
change without the programmer having to make it multiple times. Inheritance also aids exten-
sibility since, if a third architecture is introduced with much the same commonalities, only a
third subclass of the abstract superclass needs to be constructed.

Another reason that code sharing can benefit operating systems is that there are often

similar data structures implementing various operating system policies and mechanisms between
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versions of an operating system, or within a version. An example of this situation can be
found in various versions of the UNIX operating system. The UNIX file system is localized
around the concept of an i-node[Bac86], which maps logical blocks of the file onto physical disk
blocks and localizes other information about the file such as access protection bits and the file’s
size. The two major version of UNIX, System V[SVI85] and BSD[BSD84], both implement
i-nodes in subtly different ways while maintaining an almost identical behavior. Support for
such a situation can be provide by constructing an abstract class that defines the interface
and localizes any common behavior (and if possible the representation) of the data structure,
and using concrete subclasses to localize the differences] MLRC88, Mad91]. For example, in
a class hierarchy of UNIX file systems representations, the commonalities and signature can
be abstracted into a UNIXInode class, with SystemVInode and BSDInode subclasses
encapsulating the peculiarities of both systems respectively.

The basic principle motivating when code sharing can be used in any object-oriented ap-
plication is that similar architectures and data structure should beget similar implementations.

Inheritance allows grouping of the commonalities while localizing the differences.

4.2.3 Separation of Policy from Mechanism

When trying to design extensible operating system software, it is important to separate policy
decisions from the mechanisms that implement them[PS85]. Just as architecture dependencies
can be isolated inside modules, policy decisions with characteristic interfaces can be identified
and modularized. This allows different policies to be enforced as needs change by replacing a
particular policy module.

In the same way that inheritance and polymorphism support portability by allowing easy
definition of interfaces that are implemented in many ways, they likewise support isolation of
policy decisions. Policy decisions with characteristic interfaces can be represented with abstract
classes to define the interface. Concrete classes can then implement the interface for specific
policys.

Process scheduling in a multiprogrammed operating system is a good example of an appli-
cation of this technique. The mechanism involved is quite simple: idle processors need a way
to get the next process to run from a set of processes ready to execute. The policy decision

involved is the ordering of the set of processes ready to run, i.e., when a processor becomes idle,
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Figure 4.2: A sample class hierarchy

what is the process that will be assigned to the processor next. Figure 4.2 shows a sample ap-
plication of object-oriented programming techniques to the problem in the form of a hierarchy
of classes derived from an abstract Scheduler class. The Scheduler superclass encapsulates
any commonalities, such as the queue head and tail, and defines the signature that an abstract
Scheduler presents. For example, the signature will likely contain an enqueue message for
adding a process and a dequeue message for removing the next process. Each subclass pro-
vides the same signature as the parent Scheduler class but implements its policy in different
ways by defining different orderings on processes enqueued and dequeued. For example, the
FIFO-Scheduler class may dequeue processes in first-in-first-out order, and the Priority-
Scheduler may dequeue processes in an order derived from their priority. Instances of any of
these classes can be used where a Scheduler is required, for example as the system’s ready
queue. A FIFO scheduling discipline could be imposed on processes by using an instance of the
FIFO-Scheduler class. By replacing that object with an instance of the Priority-Scheduler
class, the scheduling policy of the system could be modified to be priority based. Note that this
can be achieved by only replacing a single object, i.e., by changing a single line of code in the
implementation. It could also be done dynamically by changing a single reference at runtime.
As another example of separating policy from mechanism, consider page replacement algo-
rithms in a virtual memory based operating system. If an abstract VirtualMemoryManager
class is constructed to represent the locus of information about page placement and replacement
decisions, concrete classes implementing the signature can provide different strategies while leav-
ing code using the interface unaltered. For example, a FIFO-Manager class might define the
replacement algorithm to be first-in-first-out, while a NUR-Manager class might define it to

be a not-used-recently[Dei84a] policy. Other common operating system policy decisions that
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benefit from this approach include disk head scheduling, serial line character processing and file

system access methods.

4.2.4 Optimization by Subclassing

The examples in Section 4.2.2 show how inheritance allows specialization while at the same time
achieving the advantages of code sharing. Inheritance and polymorphism combine to support
another important advantage, namely, structured optimization.

Performance is essential to an operating system. Operating system algorithms are con-
stantly refined and optimized. It is important to keep any optimizations from hindering the
maintenance and evolution of the code. Object-oriented programming gives a good framework
within which to support such optimizations. Abstract classes can define interfaces which, for
performance reasons, can be implemented in different way by concrete classes that impose
different constraints on their use.

As an example, consider an operating system constructed of multiple processes all con-
currently executing. When exchanging control between processes, the state of the currently
executing process must be saved, and the state of the new process restored on the processor.
A logical way to design this in an object-oriented operating system would be to develop a
Process class that has save and restore messages to support the state saving and restoring.
However, consider the case described in Section 2.4.2 where some processes execute on the
behalf of the operating system itself and some on behalf of application programs written to
use the system. If processes executing on the system’s behalf are more “lightweight” than the
application processes, this is to say they have less state and resources associated with them,
the implementation of the save and restore methods can be optimized. A traditional way to
implement this is to store a flag with each process that specifies the kind of logical process
it represents. The save and restore operations can discriminate upon the flag to decide the
amount of information to save and restore. Object-oriented programming provides a simpler
and more efficient solution. The Process class can be made abstract with SystemProcess
and ApplicationProcess concrete subclasses. The SystemProcess subclass’s methods can
save and restore only the state a system process uses, while the ApplicationProcess subclass’s

methods save and restore the additional state application processes need.
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Using subclassing to encode special case testing like this avoids both reserving the extra
space in the object for the flag, and testing the flag upon every invocation of a method that
relys on its value. Instead, the value of this flag is implicitly encoded in the object’s class.
Message sends automatically cause the proper method to be invoked. Thus, object-oriented
programming accomplishes the desired result with less expense in both time and space.

This is just one example of a more general result in well designed object-oriented systems:
the elimination of discriminating on an explicitly coded type identifier. The binding of a
particular message to the method implementing it is based on a object’s class and performed
at runtime. Often this delayed binding can even be more efficient than explicitly coding the

type codes and discriminating on them[RK88].

4.2.5 Trading Portability for Efficiency

Inheritance and polymorphism can also combine to provide an interesting solution to the prob-
lem of trading portability for efficiency. An inefficient but portable class can be used during
the initial phases of retargeting an operating system for a new architecture, and later replaced
with a machine specific class that improves efficiency but decreases portability. For example,
consider a MemoryBlock class with messages to zero-fill (bzero) and copy (bcopy) the block
of memory. The corresponding methods can be implemented in a portable way in most object-
oriented languages with simple loops. However, without a sophisticated compiler that performs
such optimizations as loop unrolling and specialized code sequence recognization, such code
will likely be less efficient than hand tailored assembly code. An instance of this class could,
however, be used initially in any retargeting effort of the operating system in order to minimize
the work needed to get the system running. Once the system works, it can be tuned by replac-
ing instances of the portable class with instances of a new class that implements the signature
to perform the copy and zero-fill operations in the way most efficient for the particular target

architecture, for example, with architecture specific instructions.

4.2.6 Component Testing

With respect to maintainability, object-oriented operating systems benefit from all the advan-
tages of any object-oriented system. In particular, the narrow interfaces to data defined by

objects makes testing and debugging of modules easier[Fie89, PG90]. Object-based encapsu-
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lation schemes ease debugging and testing by allowing the construction of simple test cases to
exercise an object’s interface. Object-oriented programming makes it possible to reuse even
test cases. A test case can be constructed to exercise the interface described by an abstract
class and multiple concrete classes can be plugged in and evaluated/debugged. As new classes
implementing the abstract signature are implemented, they can be tested and debugged without

creating new test cases.

4.2.7 Support for Adaptable Interfaces

One way to extend an operating system is to add new components to the application interface.
Object-oriented operating systems are especially well suited for this. The application interface
of an object-oriented operating system is defined by the set of objects made available to an
application by its name server and the classes of those objects. The set of available objects
can change dynamically as the needs of an application change. This can be accomplished by
modifying, adding or removing bindings of names to objects in an application’s name server.
Different applications can even be assigned different name servers, allowing different applications
to have different interfaces to the operating system.

The application interface of an object-oriented operating system is actually defined by the
classes of the objects accessible through a name server. A potential service can be defined by
the signature of an abstract class. A specific service can be provided by an operating system
object that is an instance of a concrete class implementing the signature. Polymorphism allows
an application compiled to use the abstract interface to remain independent of the specific
class of an object implementing that interface. Therefore, both new classes, and new instances,
can be added to the system and bound to name servers. Applications may access objects
that are instances of classes that were not even in existence at the time the application was
compiled if these classes implement existing interfaces in new ways. This can occur statically
by recompiling the operating system with new classes and objects or, ideally, dynamically with
a tool that allows new classes to be loaded into the operating system and new instances of those

classes to be created and bound into name servers at runtime.
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4.2.8 Mutual Exclusion and Synchronization

Object-oriented and object-based programming techniques have many advantages when applied
to parallel and concurrent systems. Since the object-oriented principle of encapsulation allows
only the methods of an object access to the state of the object, an object can control the
exclusivity of accesses to its state through its methods. Thus an object can provide a “safe”
interface to its instance variables. This idea is similar to Hoare’s monitors|Hoa74], except
that monitors guarantee mutually exclusive access only and preclude potentially concurrent
access. Concurrent accesses to an object’s data might be desirable in a multiprocessor or
multiprogrammed operating system to increase performance. In object-oriented programming,
the implementor of a class is free to code arbitrary restrictions on the ordering and mutual
exclusivity of methods using semaphores, locks, or other similar techniques.

For example, consider an atomically incremented counter. This can be implemented in a
non-object-oriented fashion in two ways. First the burden of mutual exclusion can be placed

on the users of the count. For example:

P( mutex );
counter = counter + 1;
V( mutex );

Or, the burden can be placed in a special function that localizes the synchronization, and the

code using the count be required to call special functions to update the counter. For example:

— assuming call by reference semantics...
IncrementAtomicCount( counter : integer )

{

P( mutex );
counter = counter + 1;
V( mutex );

}

— A sample usage
integer : counter;

IncrementAtomicCount( counter );
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The problem with the first solution is that programmers cannot always be relied upon
to implement the mutual exclusion correctly. Similarly, the second solution suffers from the
problem that programmers cannot be relied upon to always call the IncrementAtomicCount
method and not just increment the counter themselves. Another problem with both solutions
is that existing functions that take count arguments will have to be modified if they are to
be used in parallel cases, or non-parallel as well as parallel cases will have to pay the mutual
exclusion costs by compiling only one version of a function and using one of the above two
solutions.

The object-oriented solution to such a problem is quite simple. If an abstract Count class
with increment and value messages is introduced, one concrete class can implement the signature
for parallel applications, and one for non-parallel applications. The non-parallel version can
implement increment as a simple non-atomic add one operation, while the parallel version can
implement the needed mutual exclusion much like the second case above. The advantage of
this technique is that polymorphism allows generic code that was written and compiled to only
rely on the interface provided by the abstract Count class to be used both efficiently (without
the added cost of the mutual exclusion) in non-parallel cases, and safely (with the added cost
for mutual exclusion) in parallel cases.

A technique like Campbell’s path expressions|[CH74] applied to an object-oriented languages
could simplify the problem of reliably coding mutual exclusion between and within an set of

messages. Complex requirements like:

“The initialize message must be sent before the read and write messages, that can
be sent in any order, but must eventually be followed by a send of the cleanup
message, after which no read or write messages may be sent until a subsequent send

of initialize.”

can be easily specified and implemented by synchronization at method entrance and exit. This
type of ordering is very difficult to enforce in traditional programming paradigms. Usually, one

is forced to explicitly code complex locking protocols directly into the invoking routines.

52



4.2.9 Efficiency

With all the benefits of using object-oriented techniques discussed so far, the natural question to
address next is the cost (in terms of efficiency) of using object-oriented programming techniques
to construct an operating system. Obviously, the answer to this question depends heavily on
the particular object-oriented language chosen. Of the languages discussed in Section 3.2.1,
Smalltalk and CLOS are unlikely to be useful for operating system construction for performance
and/or runtime support reasons. Work by Johnson[JGZS88] to develop a compiled Smalltalk
capable of producing high quality stand-alone code should change this in the future. C++,
Eiffel, and Trellis/Owl are probably all reasonable choices. Each is a statically typed object-
oriented language allowing the production of efficient code. Modern statically typed object-
oriented languages manage to provide object-oriented features with little extra cost over normal
procedure calls [Ros87]. Static typing should not be underestimated as a valuable software
engineering advantage to the language as well. It allows better documentation by specifying
applicable argument types explicitly.

Another cost associated with an object-oriented operating system is the overhead of ac-
cessing system objects across the system/application barrier. Querying name servers may be
expensive since it may involve parsing names, but this is only a start up cost since it is per-
formed only to obtain a reference to a system object. Also, this cost is not much different
than the similar costs of looking up files or devices through the file system of a conventional
operating system. Once the reference is obtained, any performance expense reduces to the cost
associated with actually using the reference as the target of a message send. Mechanisms to
implement this efficiently will be discussed in detail in Chapter 5, but this obviously involves
crossing the system/application barrier. The cost of crossing the system /application barrier is
likely to dominate any other messaging cost, and is also incurred in a conventional operating

system when invoking an operating system primitive.

4.3 Are any Existing Operating Systems Object-Oriented?

The question “Are there already any object-oriented operating systems?” should be asked. If

such systems exist, they could be evaluated in terms of the operating system problems discussed
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in Section 2.3 to see how well the proposed advantages of object-oriented operating systems are
realized in practice.!

Conventional operating systems such as UNIX and VMS[Dei84b] fail to provide any notion
of a object-oriented services and are designed and implemented in traditional manners.

Message-passing systems like Mach[TR87] and V[Che84] provide a messaging interface to
ports or processes (servers). These systems provide a kind of object in the form of their servers,
but take no advantages of language supported classes or inheritance to structure and reuse parts
of servers. The messages in a message-passing system are not structured or typed. A server does
not necessarily define the set of messages it may be sent. Message-passing systems do, however,
provide a form of polymorphism in that the binding of client messages to servers is dynamic.
Since the receiver of a message may forward the message to another receiver, inheritance could
be simulated. This is similar to the way in which inheritance is implemented in interpreted
object-oriented languages and suffers similar performance penalties. In particular, the deeper
the simulated inheritance hierarchy, the more the message forwarding and, therefore, the worse
the performance.

Non-language supported object-based systems like those discussed in Section 2.4.5 have
explicit objects. The binding of references to objects can be dynamic, giving a polymorphic
behavior as with message-passing systems. However, without language support for inheritance,
the burden of code and interface reuse is placed directly on the programmer in the form of
programming conventions. Another disadvantage of non-language supported object-based op-
erating systems is that such systems tend to implement the method invocations corresponding
to message sends with some form of remote procedure calls [JLHB87]. This makes message
sending expensive and, for the reasons discussed in Section 2.4.5, possibly prohibitive for imple-
menting very low level operating system abstractions. Implementing all abstractions as objects
is desirable from a software engineering point of view. Object-based/object-oriented languages
gain their advantages by providing small, light weight objects with method invocations built on
ordinary procedure calls. If an operating system is implemented with such a language, the no-
tion of an object has to be extended to encompass objects outside the scope of a single program.

Section 8.8 discusses approaches to extend the light weight object model across a distributed

INot to mention that if such systems exist, the experimental system proposed in this thesis may be unnecessary
or could be compared to them.
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system. This allows both low level system abstractions and high level remote objects to be
efficiently implemented. Thus, distributed systems are seamlessly integrated.

Operating systems that provide an object-oriented interface to applications but are not
themselves internally constructed as object-oriented systems (like the interfaces to the Mach
operating system provided by the NeXT computer system interface[NEX]) allow the benefits
of object-oriented techniques to be realized by application programmers, but deny them to
operating system programmers and designers. The true value of an object-oriented operating
system is obtained in the software engineering benefits realized by applying object-oriented
techniques to the construction of the operating system software itself.

The Xerox Cedar system[SZBHS&6], is an object-oriented system and meets the requirements
closest. It, however, was not a protected operating system and failed to implement many modern
operating system features.

The SOS system[Sha88] implements many of the object-oriented techniques discussed so far
but concentrates on high level objects and does not apply the object-oriented principles to the
lowest levels of the system.

The definition of an object-oriented system presented is believed to exclude existing systems.
The experimental system presented in this thesis is believed to be the first system meeting
all the criteria proposed. It is a protected, multiprogrammed operating system implemented
completely as an object-oriented software system and providing an object-oriented application

interface.

4.4 Choices: the Experimental Prototype

In the introduction to this thesis I described an experiment in which I would design and im-
plement critical portions of an object-oriented operating system in an attempt to measure
the success of object-oriented techniques at solving problems of operating system extensibility,
maintainability, portability and performance. This chapter so far has defined the characteristic
of such an object-oriented operating system and has presented some of the potential benefits
of constructing one. The rest of this thesis will focus on the experiment itself and how well
object-oriented techniques live up to the proposed benefits. The experimental system is called

Choices[CRJ8T7]. Chapters 5 through 7 will present the design, implementation and perfor-
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mance details of Choices. But first, in the remainder of this chapter I will introduce Choices

and discuss its implementation.

4.4.1 Attributes of Choices

Even if object-oriented techniques live up to the benefits claimed so far for simple systems,
they are relatively useless if they cannot be used to construct systems of the complexity of
modern protected, multiprogrammed operating systems. Therefore, Choices was built to see
if these techniques scale up and work for such complex, hardware dependent systems. Choices
in its current form runs on the Encore Multimax[Enc89] symmetric multiprocessor, the Apple
Macintosh IIx personal computer, and the AT&T W(GS-386 computer. In particular, Choices

provides:

e Full multiprogramming support for tasks composed of multiple processes sharing a com-

mon memory. Any number of such tasks can execute simultaneously.

e A hardware enforced system/application barrier supporting message sends to system ob-

jects.

e Complete support of virtual memory with a choice of page placement and replacement

policies.

e Support for multiple arbitrary backing stores and arbitrary associations of virtual memory

ranges to those backing stores.
e A fully reentrant kernel capable of parallel execution on multiprocessors.

o Light weight context switching of concurrently executing processes capable of arbitrary

memory sharing with each other.
e Access to a variety of industry standard disk file formats.

Implementing a system of this complexity is, perhaps, beyond the capability of one per-
son. The entire Choices operating system is actually a product of multiple researchers at
the University of Illinois. I am primarily responsible for the design and implementation of
the subsystems of Choices described later in this thesis. These include: the virtual memory

management system, the process management and scheduling system, and the object-oriented
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interface. These three subsystems provide enough examples to support the claims for applying
the object-oriented paradigm to operating system design and implementation presented in this
thesis. Other major implementation contributions to Choices include: work by Peter Madany
and Doug Leyens[MCRLS88] on the support for multiple file system types; work by Gary John-
ston, Aamod Sane and Ken McGregor on the support for distributed virtual memory; more
work by Gary Johnston on some of the overall “glue” holding things together; and work by
Bjorn Helgaas, Panagiotis Kougiouris, Dave Dykstra and Ruth Aydt on identifying portability
problems in the design and implementation by retargeting Choices for additional architectures.
Roy Campbell as the manager of the Choices project and contributed to the design in many

ways.

4.4.2 The Choices Implementation Language

As discussed in Section 4.2.9, the programming language used to implement an object-oriented
operating system can drastically affect its performance. The implementation language chosen
for Choices was C++. This is mainly due to the advantages of statically typed object-oriented
languages discussed in Section 4.2.9, along with the added advantage that, although they vio-
late the pure object-oriented paradigm, C++ allows certain low-level programming techniques
necessary for the easy and efficient implementation of an operating system. In particular, the
language allows the programmer to specify an object’s representation in memory, to place ob-
jects at a specific address, and to predetermine the size of an object. Specifying an object’s
representation in memory is necessary to allow classes to represent hardware defined entities
such as device or processor control registers and device command/control messages. It is also
necessary in order to allow data structures specified by certain standards, such as the rep-
resentation of a file on disk or the placement of fields in a network protocol packet, to be
encapsulated within objects that are instances of representative classes. The ability to specify
a new object’s location in memory is necessary to allow addressing hardware specified entities
as objects once representative classes have been designed. Again, this includes entities like de-
vice registers or hardware defined data structures that are often at a fixed location in memory.
Finally, the ability to precisely determine the size of an object is useful to optimize memory

allocation/deallocation for frequently instantiated classes.

57



C++ does not always faithfully implement the object-oriented paradigm. It can, however,
be used as an object-oriented language and allows an examination of the advantages of object-
oriented programming applied to operating systems. C++ supports objects, classes, inheritance
and polymorphism. However, every value in a C++ program is not an object. This is a
concession to simplicity of code generation and optimization since, in particular, primitive
types such as integers, floating point numbers and characters are not objects that are instances
of representative classes. Having such primitive types built in to the language allows the
compiler to generate traditional code for operations on such types. Specifically, since no method
lookup is done for such operations straight one-to-one mappings to machine code exist and can
be expanded in line in the generated code. Another violation of the pure object-oriented
programming is that C++ allows direct accesses to instance variables although this mechanism
does not have to be used.

Perhaps the biggest drawback of C++ is that it implements inclusion polymorphism only
in the form of inheritance polymorphism (see Section 3.1.4).2 This is mostly a concession to
efficiency and, along with static typing, allows C++ to implement a very fast method invoca-
tion scheme (see Section 5.1.1 for the detail of C++ method invocation). However, it forces
the programmer to constrain the type hierarchy to the class hierarchy. Le., a concrete class

implementing a desired signature must be a subclass of the abstract class defining the signature.

4.5 Summary

An object-oriented operating system applies the object-oriented paradigm uniformly. It has
internal system components that are represented by objects, structured by inheritance, and
made available at the applications interface by supporting message sends that cross the sys-
tem /application barrier in a protected manner.

Numerous advantages exist for constructing object-oriented operating systems. These in-

clude:
e Increased portability.

o Increased code and interface sharing and reuse.

2To get even this behavior, methods used in argument classes must be implemented as C++ wvirtual
functions[Str86].
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Support for easy separation of policy from mechanism.

Optimizations through specialization.

Support for a structured way to trade portability for efficiency when necessary.

Support for component testing.

Support for adaptable interfaces.

e Efficient and localized support for mutual exclusion and synchronization.

Support for efficient system construction.

The following chapters present the important parts of the design of Choices. Special empha-
sis is placed on how object-oriented design principles have aided both its design and implemen-
tation and how well the above benefits have been realized in practice. Specifically, the topics of
memory management, process management, and application interfaces are discussed in detail.
The memory management and process management chapters also illustrate how well modern

operating system techniques can be mapped into the object-oriented framework provided by

Choices.
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Chapter 5

Application Interfaces

5.1 Overview

The definition of an object-oriented operating system set forth in Chapter 4 requires Choi-
ces to provide a mechanism that allows application objects to send messages to select system
objects, while maintaining the system/application barrier described in Section 2.1 to protect
other system objects.

Most modern, protected operating systems enforce their system/application barrier by plac-
ing all operating system data and functions in memory that is made inaccessible to applications
by the memory management system. Special instructions are used to cross over this protection
barrier and access system functions. In an object-oriented operating system, objects encapsulate
system data. Messages can only be sent to objects that are accessible. However, accessibility
(or the lack there of) cannot be enforced without some form of language or compiler support
for separate logical address spaces, or hardware support for object capabilities] NW77, MB8&0].
Language and compiler implemented protection schemes are not available for C++. Only tradi-
tional protection mechanisms (virtual memory and privileged /non-privileged execution modes)
are available on the hardware platforms chosen for developing Choices. Therefore, the ap-
plication interface of Choices is designed to only rely on conventional hardware protection
mechanisms to limit object accessibility. All system objects are placed in memory made in-
accessible to untrusted applications by the Choices virtual memory management system. A
mechanism that allows messages to be sent to system objects in a protected manner is provided

to cross the system/application barrier. The implementation of this mechanism uses a prozy
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object technique[Sha86]. Choices allows ordinary C++ programs, compiled to access ordinary
C++ objects, access to system objects without changes to the compiler or the application. At
the same time, it allows detection and interception of incorrect accesses to system objects.

Support for the object-oriented interface of Choices centers around the ObjectProxy class.
ObjectProxys are indirect references to system objects. Although system objects are normally
inaccessible to applications, ObjectProxys are addressable by application programs. Messages
can be sent to an ObjectProxy using the normal C++ method lookup and invocation scheme.
To an application, an ObjectProxy appears to be the system object itself. Messages sent to
the ObjectProxy provide the same results as if they were sent to the system object itself. In
reality, messages sent to an ObjectProxy are transparently forwarded to the actual system
object they represent. This occurs after entering the operating system in a controlled manner
(i.e. raising the privilege level of the processor via an SVC like operation) and verifying that
the operation being performed is valid.

ObjectProxys are initially obtained from name servers that convert symbolic names into
system object references. The abstract NameServer class defines the interface of classes
that perform this function. NameServer defines the bind message to insert a mapping of a
symbolic name to a system object and the lookup message to convert a symbolic name into a
proxy of the object it names (if that object exists). Only trusted system routines can add new
bindings to a NameServer. Concrete classes implementing the NameServer signature are
free to implement these operations in any way desired. Each Choices application is assigned a
NameServer. Since the only system objects accessible to an application are those for which
ObjectProxys can be obtained, a Choices NameServer completely defines the application
interface for the applications to which it is assigned.

Before the implementation of ObjectProxys can be explained in detail, it is necessary to

briefly discuss how C+4 implements object method invocations.!

! More information about the C++ language can be found in [Str86].
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5.1.1 C++4 Method Invocation

C++ associates with each object a reference to a list of its methods.? The class of an object
determines the contents of the list. Multiple instances of a class can share the list. A class
reserves an entry in the list for each of its methods. A subclass uses a copy of the superclass’s
list and replaces the entries corresponding to redefined method with the addresses of the new
methods. If the subclass defines new methods, it extends the list.

Sending a message in C++ proceeds by indexing into the list to look up the desired method
and invoking the method with a normal procedure call. In order to allow the method access
to the object’s state, a reference to the object is passed along as an extra (implicit) parameter.
The table is indexed by a fixed offset per message.® Since C++ is a statically typed language,
the offsets are assigned at compile time.

This form of method lookup and invocation allows C++ to provide the object-oriented
feature of delayed (runtime) binding of messages to object methods with the cost of only a
pointer dereference, a table index, and a procedure call. Versions of C++ supporting multiple
inheritance have slightly additional costs for method invocation. In particular, an adjustment
of the reference to the actual object data is required. The C++ compiler used for Choices
supports multiple inheritance and, therefore, imposes this penalty. However, Stroustrup[Str89]
claims that this cost is not a constant cost for all method invocations and can be eliminated if
multiple inheritance is not used.

For example, consider the C++ class declaration in Figure 5.1. The C++ compiler creates a
method lookup table for such a class with the addresses of the buy and sell methods. Figure 5.2
shows the actual method lookup table generated by the C++ compiler used to compile Choi-
ces on the Encore Multimax (g4+ version 1.37.1[Tie90]). It consists of an array of entries,
each with three fields. The first two fields (the pairs of zeros) are used to support multiple
inheritance. They determine the adjustment to be added to the implicit reference to the object

data when a method is invoked. These fields are irrelevant to the rest of this discussion. The

2Tt is assumed by the Choices implementation that all the methods of a class that have instances available
as application accessible system objects are wvirtual functions in C++ parlance. Likewise, the data (instance
variables) of a proxied class are assumed to be only accessed through these methods.

®While small variations exists, the mechanism discussed in this section is, in general, true for all C++ compilers
I have seen to date. While it is not the only mechanism available to a C++ compiler writer, its use has become
so wide spread that it is rapidly becoming the “standard” way to implement method invocation for C++.
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class Widgit {
int value;
int cost;

virtual int buy( int number );
virtual int sell( int number );

b

Figure 5.1: A sample C++ class declaration

0 0

& Widgit::buy(int)

0 0

& Widgit::sell(int)

Address of method N = table [ 8N + 12]

Figure 5.2: The method table for the Widgit class
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int
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Figure 5.3: C++ method invocation

third field is the address of a method. One exception is that instead of the address of a method,
the first entry in the table has as its third field the number of entries following it in the table.
This is the number of methods the class has defined.

Fach instance of a class references the class’s method lookup table. (see Figure 5.3). If, for
example, the buy message is sent to a Widget, the address of the method table is fetched from
the object and the address of the buy method is found in the second entry in this table. The
function at this address is then called with the arguments to the buy message and the implicit
parameter representing the object itself as parameters. Once the function implementing the
method has completed, control and results are returned to the instruction following the message

send using the normal procedure return mechanism.

5.1.2 Proxied Method Invocation

An ObjectProxy behaves as an indirection to a system object. An ObjectProxy has two

instance variables: a reference to a system object (realObject), and a flag indicating if the Ob-
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Figure 5.4: Using ObjectProxys to access system objects

JjectProxy is valid (validFlag). What distinguishes ObjectProxys from other system objects
is that they and their method lookup tables are kept in memory that is readable, but not write-
able, by applications. This lets applications send messages to an ObjectProxy without being
able to modify it. Each method of the ObjectProxy class provides a controlled entry into the
operating system. The code implementing these methods, like the ObjectProxys themselves,
is kept in memory readable (executable) but not writeable by application programs. Thus,
application programs can fetch the address of the method table from an ObjectProxy, fetch
the address of a method from this table, and branch and execute the code; but they cannot
modify the ObjectProxy, its method table, or its methods in any way (see Figure 5.4). To
the application programmer and C++ compiler, it appears that programs can perform normal
C++ method invocations on system objects represented by Objectproxys. For example, a
method that was compiled to send the print message to an object passed in as an argument will
work if the actual parameter is either a system object (ObjectProxy) or a normal application
object. A set of ObjectProxys can be kept in memory shared between a set of applications.

These applications can then share access to the corresponding system objects.

65



All methods of ObjectProxy cause entry into the privileged execution mode in order to
allow the real system object the ObjectProxy represents to access other system objects and
data. This is accomplished with the help of an architecture specific trap instruction that saves
the application state, raises the privilege level, and branches to a trap handler within the
operating system. The trap handler decides which method was being invoked either by which
trap was taken, or by arguments passed to the trap handler by the ObjectProxy method
implementation. The ObjectProxy the message was sent to can be determined from the
saved application state. Since the ObjectProxy contains a reference to the real object, the
trap handler can obtain that as well. Once the real system object and the desired message
are determined, the trap handler copies any arguments out of the saved application state and
sends the message to the system object with those arguments. All this occurs in the privileged
operation mode so that, in effect, the operation is invoked on the object as if it were done
by operating system code being executed by the process. The target system object, therefore,
has access to other system objects and data without further checks. Once the method returns,
results are placed back in the saved application state and the trap handler returns back to the
application after resuming non-privileged execution.

If an application passes an ObjectProxy as an argument to a message being sent to another
ObjectProxy, that argument is transparently usable by the system object that receives the
message. Messages may be sent to this ObjectProxy from within the operating system. For
efficiency, this technique depends on using as the privileged instruction to trap into the operating
system, the equivalent of a change mode to privileged execution instruction. If the processor is
already executing in privileged mode, such an instruction is a no-op. If the processor is executing
in non-privileged mode, it causes the desired trap into the operating system. ObjectProxy
methods are implemented so that if the trap is not taken, the ObjectProxy is dereferenced to
fetch the reference to the target system object, and a second message send is performed on that
object. This occurs with the only overhead being an effective no-op instruction plus the cost of
an additional method lookup and invocation. Most compiled object-oriented languages which
support dynamic method binding are likely to implement something similar to the C++ table
scheme. Therefore, if Choices were reimplemented in another language, ObjectProxys similar

to the C++ implementation should be possible. To clarify some of the issues introduced above,
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.word methodNumber
Entry:
bicpstw U-Bit
movd realObjectOffset(r0),r0
pushd methodTableOffset(r0)
movd ((8*methodNumber)+12)(0(sp)),0(sp)
ret $0

Figure 5.5: A sample ObjectProxy method

the actual implementation of ObjectProxys for the NS32332 processor architecture[Nat86] is

given in the next section.

5.1.2.1 An Actual Implementation of ObjectProxys

On the NS32332, the bicpsrw instruction is used to trap into the operating system. This
instruction mnemonic literally means “bit clear in processor status register”.* The argument
to this instruction specifies which bits to clear. Clearing the U-bit (the 8’th bit position in
the word) will attempt to switch the processor to the “system” protection level (the highest
privilege mode). When the U-bit is set, the processor executes in the “user” protection level
(the lowest privilege mode). Clearing the U-bit is itself a privileged operation. If the processor
is already executing in the system protection level, clearing the U-bit has no effect, otherwise it
causes a privileged instruction trap to occur. This is exactly the behavior needed to implement
ObjectProxys.

The code implementing a sample ObjectProxy method is shown in Figure 5.5. The word
before the entry point to the method stub is used by the trap handling code to determine
which method was being invoked when the trap was taken. The bicpsrw instruction is the first
instruction executed. It attempts to clear the U-bit. If the processor was already executing
in the system privilege level, this instruction will have no effect and execution will continue

with the next instruction. If the processor was executing in the user privilege level (executing

*The trailing w indicates the instruction operates on a word of data (2 bytes on this architecture), this word
being the processor status register (psr) itself.

67



application code) then a trap will occur and the processor will invoke a trap handler. What

happens in both these cases is discussed in the following sections.

No Trap Taken: If no trap is taken, the instruction following the bicpsrw will be reached.
To understand what happens next, a quick description of the argument passing/procedure call
mechanism used on the NS32332 by the C++ compiler used for Choices is needed. The first
two arguments to any procedure are passed in r0 and rl (general purpose registers zero and
one) respectively. The C++ compiler passed the implicit reference to the object as the first
parameter. Therefore, r0 contains this reference and rl contains the first explicit argument to
the message. The remaining arguments are pushed onto the stack. The jump-to-subroutine,
jsr, (absolute address operand) and branch-to-subroutine, bsr, (relative address operand) in-
structions are used to effect the actual transfer of control. They both push the return address
(the address of the next instruction) on the top of the stack and branch to the entry point of
the function being called. Therefore, upon entry to the code stub above, r0 contains the first
argument (the address of the ObjectProxy itself) and rl contains the second argument (ac-
tually the first argument to the message in the C++ source code). The rest of the arguments
and the return address are on the stack. The code in Figure 5.5 converts r0 into a pointer
to the real system object, looks up the method for this object, and jumps to the method’s
entry point without disturbing either r1 or the contents of the stack. The one side effect is
that the r0 register is altered to contain the address of the real system object rather than the
ObjectProxy so that the method called will have access to the real object’s data.

In detail, the first instruction after the bicpsrw instruction dereferences the ObjectProxy to
obtain the value of the realObject instance variable. This reference replaces the ObjectProxy
reference in 10, which is no longer needed. The next instruction dereferences the reference to
the real object and obtains a reference to that object’s method table, which is pushed onto
the stack. The following instruction indexes into that table to find the method address (see
Figure 5.2) and replaces the top of the stack with the address of the proper method to call. The
final instruction simultaneously pops that address off the stack and branches to the instruction
at the address (the entry point of the method). No net stack change occurs after this code
sequence, so the return from the actual object’s method will return to the invoker of this code

(the location where the message was sent to the ObjectProxy in the first place) directly.
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Since the stack and registers are provided to the method exactly as needed, any arguments are
properly passed on without copying or interpreting them in any way. Likewise, values returned
by the actual method will be passed back to the original invoker through the normal procedure
return mechanism.

Confirmation that the ObjectProxy involved was not forged by an application when it
passed it as an argument can be performed in a manner similar to that described in the next
section. This is currently not done in Choices. If a system object sends a message to another
system object, it is the sending object’s responsibility to guarantee the validity of the Ob-
jectProxy. The value of making this check the default behavior on every message sent to an

ObjectProxy from within the operating system is still being investigated.

Trap Taken: If a trap is taken by executing the bicpsrw instruction, then the result is more
complicated. The Choices trap and interrupt handling mechanism will be discussed in more
detail in Section 7.7, but for this discussion it suffices to say that the mechanism saves the state
of the executing application in a save area and sends the handle message to a trap handling
object within the operating system. For the NS32332 implementation of Choices all privilege
instruction traps are directed to the same trap handling object. The handle method of this ob-
ject first determines why the trap was taken. If it is the result of attempting to clear the U-bit,
the trap is assumed to be the result of invoking a method on an ObjectProxy, otherwise other
trap handling code is executed. Since clearing the U-bit is a privileged operation, no applica-
tion should execute this instruction during normal processing. Executing the instruction with
random or incorrect register/stack contents in an attempt to provide a forged ObjectProxy
and corrupt or crash the operating system will be caught by one of the checks discussed below.

Since the state of the application is saved, the trap handling object’s handle method has
access to the registers of the processor at the time of the trap. Therefore, the 10 register can
be fetched to find a reference to the ObjectProxy to which the message was sent. With this
reference, the actual system object can be found by accessing the realObject instance variable.
The ObjectProxy is validated by first checking if it falls within the range of memory assigned
to ObjectProxys for the invoking application. This test assures that the application does not
maliciously supply a pointer to an arbitrarily created ObjectProxy imposter in an attempt to

gain access to an otherwise inaccessible system object. The next test is to check the alignment
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of the ObjectProxy to prevent a malicious program from returning a random pointer into
the ObjectProxy memory space. The final test verifies that the ObjectProxy is active (by
checking the value of the validFlag instance variable) to prevent a malicious application program
from supplying the address of an inactive ObjectProxy. Combined, these three tests guarantee
that the ObjectProxy reference in the saved r0 register is valid.

In the NS32332 implementation, the message that was sent can be found by dereferencing a
pointer into the code stream obtained by adding a constant negative offset to the address of the
bicpsrw instruction (see Figure 5.5). This number can be compared to the number of methods
the object has by looking in the object’s method table (see Figure 5.2). The trap mechanism
places the address of the bicpsrw instruction in the applications saved context. This address
can be checked against a table of valid addresses to guarantee that a malicious application has
not tried to supply an invalid method number by executing a random bicpsrw instruction with
an erroneous value at a negative offset from the instruction’s address.

Once the method number is obtained, the address of the object’s method table and the
address of the proper method can be obtained in a similar way as in the non-trapping case.
The final step is to call this method with the same context as originally intended. This is
accomplished by copying the arguments on the top of the application’s stack onto the system’s
stack, loading the processors registers with the values saved at trap time, and branching to the
method. In practice, a fixed number of arguments is copied regardless of the method. This
number (five) was determined by analyzing the source code of Choices to find the maximum
number of arguments any message ever takes. If the message being sent does not take this many
arguments then no harm occurs since, in C++, the sender of a message pops the arguments off
the stack and not the method invoked. It should be noted that it is the responsibility of the
target system object’s implementation to ensure that the arguments are correct for the method
being invoked.

When the method returns, the current contents of the processor registers replace the values
in the save area from the trap so that when the trap handler returns to the application, it will
appear as if the actual object message send returned, and any results will appear in the proper
registers. Likewise, the arguments copied onto the system stack are removed. Finally, the trap

handler resumes the application at the point immediately following where the trap occurred
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and, therefore, the application continues execution at the point following where it sent the

message.

5.2 Performance of the ObjectProxy Mechanism

The performance of the ObjectProxy mechanism will be evaluated by comparing it against
“normal” C++ message sends and against traditional operating system service mechanisms.
In order to give a basis for comparison, Table 5.1 first lists the overheads of C++ message
sends (virtual function calls) versus traditional function calls for various numbers of arguments.
These measurements, along with the others, were made on a 6 processor Encore Multimax with
NS32332 processors each with a 15 megahertz clock. The measured overheads includes both
the invocation and return from the call. In these and all the tests that follow, the functions
(method) ignore their arguments. The arguments are only passed to give a measure of the cost
of passing arguments, not the cost of using them. As can be seen in the Table 5.1, C++ message
sends impose an additional overhead of 3 to 4us over traditional function calls. This overhead
is a result of the extra indirection caused by the method lookup in the object’s method table
and the overhead multiple inheritance (See Section 5.1.1) introduces. To put the additional 3
to 4us in perspective, deferencing a pointer to a global variable costs 0.6us, an integer add of
two variables in memory costs 1.60us, and an integer multiply of two variables in memory costs
6.80us. Any reasonable amount of computation performed by a method is likely to overwhelm
the additional cost of the message send.

The effect of the compiler argument passing strategy can also be seen in Table 5.1. Since
the first two arguments are passed in registers, the cost of function calls would be expected
to rise dramatically at 3 arguments over two arguments due to the accessing of the stack to
push the third argument. This is confirmed by the results. In the case of a message send, the
jump is seen at 2 arguments rather than 3. This is because, as discussed in Section 5.1.1, the
C++ compiler passes a reference to the object itself as an additional implicit argument to each
method, thus, increasing the number of arguments by one.

Table 5.2 compares the Choices ObjectProxy mechanism to a traditional system service
approach using SVC-like instructions. To put these numbers in perspective, the UNIX getpid()

system call (that takes no arguments and returns a single integer), takes 98us to complete on
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Args | Message Send | Function Call
0 5.67 ps 1.93 us
1 6.19 us 247 ps
2 7.00 ps 2.40 ps
3 7.19 us 3.55 us
4 8.02 us 4.61 ps
5 9.05 us 4.62 us

Table 5.1: Overhead of C++ message sends versus traditional function calls

Args | ObjectProxy | System Call
0 86.9 us 96.3 us
1 87.4 ps 96.1 ps
2 87.8 us 96.7 us
3 89.1 pus 98.5 us
4 88.1 pus 99.9 us
5 92.8 ps 100 ps

Table 5.2: Overhead of ObjectProxys versus traditional system calls

the same hardware. The Choices system call is implemented by loading a register with the
desired service number and trapping into supervisor state. Arguments are accessed directly out
of the saved application context without copying since every system call is custom written for
the function it performs. The UNIX getpid() operation is supported by the UNIX kernel in a
similar way.

The better performance of the ObjectProxy message send is a result of exploiting knowl-
edge of the C++ method invocation convention. In particular, registers volatile across a mes-
sage send do not need to be saved upon the trap into the operating system supporting the
ObjectProxy method implementations. The implementations of UNIX system calls (and the
corresponding Choices mechanism) need to save a significantly larger amount of state and
impose approximately the same amount of overhead in either UNIX or Choices.

Since a fixed number of arguments are copied from the application context to the system
context during an ObjectProxy invocation, the cost would be expected to be immune to
the number of arguments to the message. This is not quite true since the caller must still
push additional arguments on the stack. This explains the small rising expense of additional
arguments to proxied message sends.

Table 5.3 measures the overheads of performing some of the same operations from within

the operating system code itself. The interesting result in this table is the difference between
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Args | ObjectProxy | Message Send | Function Call
0 10.8 us 5.67 ps 2.07 ps
1 11.1 ps 5.91 ps 2.27 ps
2 12.3 us 7.13 ps 2.33 ps
3 13.2 us 8.06 ps 3.55 ps
4 13.6 us 8.49 ps 4.39 ps
5 14.4 ps 9.45 ps 4.85 us

Table 5.3: Overhead of ObjectProxys used from within the system

an ordinary message send and a message send to an ObjectProxy passed in as an argument
from an application program. This difference (approximately 5us) reflects the extra message
send incurred by using the ObjectProxy. As would be expected, the cost is independent of
the number of arguments since no arguments are copied.

These results indicate that a reasonably robust object-oriented interface can be provided
by an object-oriented operating system without significant degradation of performance for an
application’s requests for system services and without significant penalty for the system using

the proxy mechanism as well.

5.3 Summary

Choices uses hardware memory protection to protect operating system data and functions from
erroneous or malicious application programs. At the same time, the definition of an object-
oriented operating system set forth in Chapter 4 requires Choices to provide a mechanism
that allows application objects to send messages to select system objects, while maintaining a
system /application barrier to protect other system objects.

The ObjectProxy mechanism allows messages to be sent to system objects without mod-
ifications to the C++ compiler or the application program itself. Code previously compiled
to send messages to non-system objects will work equally well with system objects (Object-
Proxys). The performance of the Choices ObjectProxy mechanism is comparable to the
costs of traditional mechanisms for implementing operating system primitives. Therefore, the
Choices application interface shows that the advantages of adaptable interfaces described in

Section 4.2.7 can be achieved with costs comparable to traditional application interfaces.
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Chapter 6

Memory Management

6.1 Overview

Most modern computer architectures provide hardware support for virtual memory [ADUT71,
BS88, Dei84a, PS85] to allow operating systems to support efficient and secure sharing of
physical memory between multiple applications, to allow an application’s address space to be
larger than the physical memory present in the computer, to provide artificial data contiguity,
and to protect operating system data and functions from an application. Choices uses such
hardware support to implement its memory management system.

The goals of the Choices memory management system are to provide a portable virtual
memory system that is compatible with a wide range of architectures, to provide a flexible
and extensible model of virtual memory, and to do both efficiently. Choices extends and
refines existing algorithms, such as those in UNIX[LMKQ89], Mach[R*87], SunOS[GMS87], and
VAX/VMS[LL82], to implement its object-oriented approach to the management of memory
and secondary storage.

The memory management system of Choices provides:

e virtual memories that are composed of independent logical memories mapped into the

address space.
e shared logical memories both within and between virtual memory address spaces.

e logical memories mapped into multiple, arbitrary virtual memory address ranges.
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Figure 6.1: Traditional virtual memory management

e independent backing storage for each logical memory.
e a choice of different backing storage policies.
e alternate logical memory access through a file-like read /write access protocol.

e a physical memory representation scheme that provides an abstraction for exploiting scat-

ter gather direct memory access hardware.

e a choice of local page placement and replacement algorithms for individual logical mem-

ories.

e a framework of abstractions and reusable software that can be used to build experimental

virtual memory systems.

Choices departs from other systems by mapping such algorithms into the object-oriented
framework it provides. This allows greater flexibility and customizability.

Conceptually, traditional virtual memory systems associate with each virtual address space
a table mapping each unit of virtual memory, u, to a backing storage address /() and a physical

memory address p(u) (see Figure 6.1). This table forms an inventory of virtual memory units
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specifying where they are to be found in physical memory or on backing storage. This table
is actually implemented in most operating systems as two separate entities. The portion of
the table mapping units to physical addresses is directly implemented in the hardware dynamic
address translation tables, and the backing storage mapping is implemented in operating system
data structures.

In an object-oriented operating system like Choices, it is natural to use objects to manage
the mapping of addresses to backing storage and physical memory respectively. Many virtual
memory implementations use a single backing store for an entire virtual address space (or even
for all virtual address spaces). However, the Choices virtual memory scheme is similar to
those used in MACH[R*87] and SunOS[GMSS87], in which a virtual address space is divided
into multiple regions with each region having its own backing store and physical memory map.
Each region is treated as a logical memory that is cached in physical memory!, and objects
are assigned to manage each region’s physical memory and backing storage management. A
logical memory is basically a collection of related data aggregated together. A disk file is the
best example, although an entire disk would also qualify.? Other examples include the code of
an executing application, the data of an executing application, the control stack of a process,
or an arbitrary collection of related objects.

Dividing the virtual address space into logical regions allows the Choices memory placement
and replacement polices to take advantage of the characteristics of a logical range of memory.
For example, references to memory holding a stack will exhibit strong spatial locality. Since each
region has its own object representing its mappings to physical memory (see Figure 6.2), the
replacement algorithm can simply discard memory furthest from the top of the stack yielding
performance equal to a least recently used memory replacement algorithm without requiring the
collection of access pattern information. Similarly, the division of the virtual address space into

regions also improves locality of information about data placement on backing storage since the

I The concept of a logical memory is almost identical to a segment in architectures supporting segmentation.
A segment would be ideal, but since Choices should run on traditional non-segmented (paged) architectures, the
logical memory concept is the best that can be achieved. The main difference between a Choices logical memory
and a segment is that addressing past the end of a logical memory does not cause an error as it would in a
segmented architecture, but rather it enters the next logical memory in the address space.

2Since a logical memory occupies a set of virtual memory addresses, an entire disk might be too large to
be mapped directly to a virtual memory range limited by the size of the hardware supported address size. For
example, a five gigabyte disk could not be mapped into an address space with 32-bit addresses. Section 6.4.1
details an alternative solution.
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object representing each region’s backing storage can manage its logical-to-permanent storage
mappings in different ways.

Choices spreads the virtual to physical mappings across multiple objects. Unfortunately
little, if any, computer hardware supports dynamic address translation tables in such a for-
mat. This problem is solved by introducing another object that represents the actual hardware
dynamic address translation tables for a virtual address space (see Figure 6.2). One of these ob-
jects exists per virtual address space. This object maintains a cache of currently active virtual
to physical mappings in the hardware tables. Non-cached mappings can be reconstructed on
demand from the architecture-independent information kept by the rest of the virtual memory

management system objects. This solution is similar to the pmap system in MACH[R*87].

6.1.1 Overview of the Choices Memory Management Classes

The object-oriented framework constructed for the Choices storage and memory management

system roughly divides the system into five sets of classes:

1. The classes that manage dynamic address translation hardware consist of AddressTrans-
lation, which represents a single hardware dynamic address translation table, and Ad-
dressTranslator, which represents the actual hardware dynamic address translation unit
(MMU) of an individual processor. Instances of AddressTranslation implement the

u — p(u) physical mapping cache in Figure 6.2.

2. The classes that manage physical memory management consist of Store, Physically Ad-
dressableUnit, and PhysicalMemoryChain. PhysicallyAddressableUnits each
represent a single unit of physical memory (a page or segment frame). A Store represents
the collection of all physical memory as Physically AddressableUnits and manages
their allocation and deallocation. A PhysicalMemoryChain represents a collection of
Physically AddressableUnits composing an arbitrary virtual address range as resident

in physical memory, or a range of physical memory addresses for the I/O system.

3. Access to backing storage is implemented by the MemoryObject class. Each Mem-
oryObject provides access to logically contiguous blocks of data stored on secondary

storage. MemoryObjects represent backing storage of the logical memories discussed
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earlier. MemoryObjects implement the v — [(u) mappings to backing storage in the

address translation maps in Figure 6.2.

4. The transfer of data between physical memory and backing storage (MemoryObjects) is
managed by MemoryObjectCaches. MemoryObjectCaches represent the u — p(u)

mappings to physical memory in the address translation maps shown in Figure 6.2.

5. A complete virtual address space is represented by a Domain. Each Domain divides
a virtual memory into multiple regions, each mapped to an individual MemoryOb ject.
FEach Domain has an associated AddressTranslation to effect its mappings in hard-

ware.

During normal execution, the mappings maintained by an AddressTranslation contain
the information necessary for the dynamic address translation hardware to convert virtual ad-
dresses to physical addresses. When an instruction references an address for which a mapping
is not present, a fault occurs. At this point the current Domain is consulted to determine
within which MemoryObject and at what offset within that MemoryObject the missing
data falls. That MemoryObject is then sent a message to bring that data into physical mem-
ory. The MemoryObject passes the request on to its corresponding MemoryObjectCache.
The MemoryObjectCache allocates new physical memory in the form of Physically Ad-
dressableUnits and reads the data from the MemoryObject. Once the data is brought
into physical memory, the Domain updates the current AddressTranslation with the new
mapping and restarts or resumes the faulting instruction.

When physical memory is full, MemoryObject Caches return some of their physical mem-
ory resident data back to the backing storage provided by their corresponding MemoryOb-
jects. The proper AddressTranslations are updated to reflect the fact that the data is no
longer present in physical memory so that a fault will occur if removed data is referenced again
in the future.

The following sections explain in detail each class in the Choices virtual memory and backing
storage management system and the messages they define to implement the system. Emphasis
is placed on how object-oriented techniques have benefited the design and implementation of

the memory management system.
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6.2 Dynamic Address Translation

Dynamic address translation hardware is the key mechanism that makes virtual memory prac-
tical. Across the spectrum of today’s hardware, many different dynamic address translation
mechanisms are employed. Examples of dynamic address translation hardware schemes include
simple page tables, multi-level page tables, translation lookaside buffers, and inverted page tables.

Single level page tables (see Figure 6.3) decompose a virtual address into a pair (P,,0)
by dividing the bits in the address into two halves. The page size determines the number of
bits dedicated to the page table index (P,). The page table contains physical memory page
frame addresses. The physical page number returned from the page table, P,, is concatenated
with the offset (O) from the original virtual address to form the destination physical address,
(P,,0). The problem with single level page tables is that for a large address space, and even
moderately sized pages, the size of a page table can be quite large. The Digital Equipment
Corporation VAX-11[LL82] computer line uses a single level page table scheme, but tries to
reduce the memory occupied by the page table. The address space is divided up into regions.
One region is set aside for the system and a single system page table (that resides in physical

memory) maps this region. The virtual memory represented by this region contains the page
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tables for the other regions of memory. Since the other region’s page tables are in virtual
memory, they can be sparse, and may even be paged.

Multi-level page tables reduce the amount of physical memory occupied by page tables as
well. Multi-level page tables extend the single level page table approach by dividing an address
into a tuple (L1, Ly, L3, ..., L,,0). Each L;, i = 1,2,3,...,n — 1, is used in turn to index into
a corresponding table and return the next level page table until L, is reached and an actual
physical page frame address is found in the highest page table. This is perhaps the most common
dynamic address translation scheme. It reduces memory usage since marking a low level page
table entry invalid invalidates all higher level page tables and, therefore, all virtual memory
addresses that can be reached by indexing through that low level table entry. Figure 6.4 shows
a sample two-level page table. Two-level page tables are employed by the Intel iAPX386[Int87]
and the National Semiconductor 32000[Nat86] architectures. The Motorola 68000[Mot89] and
Motorola 88000[Mot88] architectures employ multilevel page table schemes where the number
of levels (1-4) is a parameter of the memory management unit.

Inverted page tables (see Figure 6.5) decrease the amount of memory committed to page
tables to a constant that is a function of the virtual memory address space size. They split an

address into a (P,, O) pair, but hash P, into a table that has one entry per physical page in the
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system. The entry that matches P, determines P,. Inverted page tables are usually used on
segmented memory systems such as the IBM 801[CM87], the RT/PC[IBM86] and the Hewlett
Packard Precision Architecture[Hew87] where a single large address space exists and auxiliary
mechanisms are used to partition that address space up between applications. One inverted
page table is used to map the entire single address space.

The most physical memory efficient dynamic address translation mechanism uses a trans-
lation lookaside buffer (see Figure 6.6). Translation lookaside buffers decrease the physical
memory used for tables to zero. Like page table based schemes they divide an address into
a (P,,0) tuple, but in parallel search a hardware table of virtual to physical page mappings.
This table is kept in extra fast memory outside the normal address space (physical memory)
of the processor. It is usually small and filled by software via special instructions when a P,
match is not found.

A hardware managed translation lookaside buffer is also used as a cache to speed up dynamic
address translation with most page table based schemes [Int87, Nat86, Mot89, Mot88, LL82].
The translation lookaside buffer, in this case, holds a cache of recently accessed virtual addresses

and their corresponding physical addresses obtained from the page tables. Each virtual address
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generated is first searched for in the lookaside buffer. If no match is found, the page tables are

searched normally, and the lookaside buffer is updated with the values found in the page table.

6.2.1 Dynamic Address Translation in Choices

In order to keep the system maintainable and capitalize on the portability advantages of object-
oriented programming described in Section 4.2.1, one of the major design guidelines of the
Choices memory management system is to encapsulate the hardware dependencies in a few
well chosen classes. The aim is to do this without sacrificing efficiency. In Choices, the abstract
AddressTranslation and AddressTranslator classes encapsulate the hardware function of
mapping virtual addresses generated by running programs into physical addresses. The Choi-
ces dynamic address translation sub-system is defined by these two abstract classes. These
classes present an architecture-independent interface to the rest of the memory management
system. Each AddressTranslation encapsulates the hardware-dependent representation of
dynamic address translation for a single virtual address space and defines messages to manage
these mappings. An AddressTranslator encapsulates the architecture-dependent memory

management unit (MMU) that actually performs dynamic address translation. Concrete classes
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implementing the AddressTranslation and AddressTranslator signatures implement their
methods for specific architectures.

The messages defined by the AddressTranslation class include:

addMapping: to add a virtual-to-physical translation at a given protection level.
e removeMapping: to invalidate a mapping for a virtual address range.
o changeProtection: to change the protection of a given range of virtual addresses.

e activateOn: to indicate that an AddressTranslation is being used by a particular Ad-

dressTranslator

e deactivateOn: to indicate that an AddressTranslation is no longer being used by a

particular AddressTranslator.

e and syncUsagelnformation: to copy referenced and modified information about a particular

address to the corresponding Physically AddressableUnit.
The main AddressTranslator messages are:

o determineFaultCode: which is used during translation fault processing to determine what

caused the fault.

e and flushTranslation: which flushes any translation cache mappings for a given virtual
address. This message is sent primarily by algorithms responsible for keeping shared

memory consistent as it is moved between physical memory and backing storage.

The addMapping message of AddressTranslation is sent during missing memory fault
processing (see Section 6.6.2). When a request for a non-resident memory address occurs, the
rest of the Choices memory management system uses architecture-independent algorithms and
information to retrieve the data, and update the appropriate AddressTranslation by send-
ing it the addMapping message. When architecture-independent page or segment replacement
algorithms (see Section 6.6.3) are invoked to swap out virtual memory pages or segments from
main memory, they send the removeMapping message to invalidate previously active mappings.
The implementation of the removeMapping method in turn sends flushTranslation to the current

AddressTranslator to invalidate any cached dynamic address translation mappings.
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The AddressTranslation class’s changeProtection message is used to support the imple-
mentation of special-purpose virtual memory techniques that require the alteration of the phys-
ical protection of a region of memory. For example, copy-on-write requires the ability to change
the access allowed to a region of memory from read-write to read-only and back again.

The addMapping, and changeProtection messages take architecture-independent protection
level arguments that are used by AddressTranslation objects to determine the accesses the
dynamic translation hardware should allow to a range of virtual addresses. The values of these
protection level arguments are elements of enumerated type including: ReadOnly, ReadWrite,
NoAccess, ExecuteOnly etc. These values are converted by an AddressTranslation into the
actual values the specific architecture defines for enforcing the corresponding logical protection
on a range of virtual memory. The implementation of AddressTranslation may weaken, but
never strengthen, a protection level value if the particular architecture cannot enforce the given
value. For example, on the NS32332 version of Choices, ExecuteOnly is actually enforced as
ReadOnly.

The activateOn and deactivateOn messages of AddressTranslation are used to support con-
sistency algorithms in cases where an AddressTranslation is concurrently shared by multiple
processors. These messages are sent to indicate that the AddressTranslation is currently be-
ing made active or inactive on a particular AddressTranslator (and therefore its correspond-
ing processor). When mappings in an AddressTranslation are modified, this information is
used to determine which AddressTranslators are actively referencing the AddressTrans-
lation. The flushTranslation message is then sent to these AddressTranslators in order to
invalidate any hardware cached dynamic address translation mappings.

As discussed in Section 6.2, hardware dynamic address translation tables on most architec-
tures consume physical memory. Following the example of the pmap system in Mach[R+87],
architecture-dependent representations of the virtual-to-physical memory mappings kept by
AddressTranslations may be discarded at any time. This allows AddressTranslations to
act as caches of recently referenced virtual-to-physical mappings for the address spaces they
represent. The total set of active mappings kept by all AddressTranslations can be stored
in a limited amount of physical memory shared between them.

Keeping a subset of active mappings in the hardware tables is possible because missing

mappings can be reconstructed on demand from architecture-independent information kept by
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the rest of the Choices memory management system. An AddressTranslation may discard
mappings at any time in order to allow the memory they were occupying to be reused by
another AddressTranslation. In order for such a “cached mapping” system to be more space
efficient than a traditional page table or similar approach, the amount of information kept in the
architecture-independent form must be smaller than the amount the traditional approach would
consume. Examples of how this can be achieved include: using a logical page size greater than
the physical page size; storing only the base page and total length of a contiguously mapped
region; and coalescing contiguous unmapped regions into a single (architecture-independent)
descriptor. Choices MemoryObjectCaches (see Section 6.5) can use any of these approaches.

Besides facilitating the portability of Choices, the AddressTranslation class hierarchy
exemplifies the ability of object-oriented techniques to support code reuse across similar hard-
ware versions. The Choices virtual memory system was first implemented on the National
Semiconductor NS32332 [Nat86] processor. This architecture uses four-kilobyte pages and a
two-level page table to implement dynamic address translation. Choices represents this by the
NS32332Translation class. Choices has since been retargeted to run on the Intel 80386 [Int87]
processor. The 80386 and NS32332 architectures both use four kilobyte pages and a two-level
page table. At the level of dynamic address translation, they differ only in the placement of a
few bits in their respective page table entries.

The initial retargeting to the 80386 was implemented by a person who was not involved with
the initial design of Choices. This effort included the 1386 Translation class as the concrete
class implementing the AddressTranslation signature for the 80386 architecture. Then later,
Choices was retargeted for the MC68030[Mot89], which also can use two level page tables with
four kilobyte pages, and the MC68030Translation class was constructed[Helng]. After a
close comparison, the NS32332Translation, 80386 Translation and M C68030Translation
implementations were all combined to allow substantial code sharing.?

A new TwoLevelPageTable class was introduced to define a generic two-level page ta-
ble parameterized by the page size. The implementation of this class uses the auxiliary
PageTableEntry class to represent an individual entry. Subclasses of PageTableEntry spec-
ify the representation of page table entries for the NS32332 (NS32332PTE), 80386 (i386PTE)

®In retrospect, sharing should have been expected since, as discussed in Section 4.2.2 similar architectures
permit common algorithms and data structures to be reused.
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and the MC68030 (M C68030PTE). The superclass TwoLevelPageTable localizes common
features of the three architectures. The new NS32332Translation, i386 Translation, and
MC68030Translation classes are subclasses of TwoLevelPageTable and reuse most of the
original code via inheritance. The differences between the architectures is expressed by using
instances of the different page table entry classes. Future support for other architectures with
two level page tables should also be simplified by inheriting from the TwoLevelPageTable
class. All that is needed is to add a new subclass. The page size parameter of the TwoLevel-
PageTable class trivializes retargeting to a system with two level page tables and a page
size other than four kilobytes. There is no inherent reason why a MultiLevelPageTable class
could not be constructed with TwoLevelPageTable as a subclass to further increase potential

code sharing when targeting architectures that support higher leveled page tables.

6.3 Physical Memory Management

Efficient management of physical memory is essential to a virtual memory system. Physical
memory must be shared between virtual address spaces since there is usually far less physical
memory than the sum of the sizes of all the virtual address spaces. The Choices physical
memory management classes allocate and deallocate physical memory to support the rest of the
memory management system. These classes include those that maintain the status of physical
memory blocks, manage the allocation and deallocation of physical memory, and manage the
aggregate blocks of physical memory into lists for simple manipulation. These classes are all
architecture-independent. They are parameterized only by the size of a convenient physical

memory allocation unit — the page size for most paged systems.

6.3.1 PhysicallyAddressableUnit

In Choices, an instance of the Physically AddressableUnit class represents a block of con-
tiguous physical memory. It is used to localize usage information about the block of memory
represented. The address message returns the physical address of the block. Each Phys-
icallyAddressableUnit maintains information to indicate the MemoryObjectCache for
which it is holding data, and which unit of that MemoryObjectCache’s data it holds. The

currentCache and unitNumber message return these values. The size message is sent to a Phys-
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ically AddressableUnit to determine the length of the block in bytes. The addlOReference,
removelOReference and currentlOReferences messages are used to maintain and access informa-
tion about whether the Physically AddressableUnit is currently in use by the I/O system.
The referenced, setReferenced, modified, and setModified messages access and update various
attributes of the unit when it is actively holding data. This information is updated during
memory placement and replacement. In particular, when removing a mapping from an Ad-
dressTranslation, the reference and modification information for the corresponding block of
physical memory is transferred to the corresponding Physically AddressableUnits by sending
setReferenced and/or setModified.

A block of memory may be simultaneously accessed by several processors. Therefore, each
PhysicallyAddressableUnit maintains a set of tuples consisting of a reference to an Ad-
dressTranslation currently mapping virtual addresses to the physical memory the Phys-
icallyAddressableUnit manages, and the starting virtual address of this mapping. This
information allows the actual hardware translation tables to be consulted in order to guarantee
that the referenced /modified status of a PhysicallyAddressableUnit is up to date. Sending
the syncUsageInformation message to all the AddressTranslations in the set causes this
to occur.

In a system heavily utilizing shared memory, the number of address spaces actively ref-
erencing a particular physical memory range may be quite high and, therefore, the number
of AddressTranslations referencing a given PhysicallyAddressableUnit may be high as
well. Keeping track of all the AddressTranslations referencing each Physically Address-
ableUnit may seem prohibitively expensive. This problem is solved in Choices because an
AddressTranslation is only a cache of active mappings, not a complete set of virtual to
physical mappings. Each PhysicallyAddressableUnit maintains only a fixed number of ref-
erences to AddressTranslations. If it is necessary to add another reference (usually the result
of a missing memory fault being processed), and all references are currently in use, the least
recently added reference is replaced. Before it is replaced, however, the AddressTranslation
currently referenced is made to invalidate its mapping to the memory the Physically Address-
ableUnit represents. This is accomplished by sending it the removeMapping message with the
associated virtual address as an argument. The upper bound on the number of references a

PhysicallyAddressableUnit needs to maintain is the number of physical processors in the
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system. This is because, in the worst case, a different address space may be active on each
processor and each address space may be actively referencing a given physical memory unit. In
practice, however, this is probably much larger than actually needed. Since the current amount
of sharing in Choices is actually quite low, using three references has been hueristically chosen

to be acceptable.

6.3.2 Store

An instance of the Store class represents a collection of all of the allocatable Physically Ad-
dressableUnits in the system. The allocate and free messages are sent to a Store to manage
the assignment of physical memory to operating system subsystems including the virtual mem-
ory management and I/O subsystems. The allocate message is sent to request a number of bytes
of physical memory from the free physical memory pool. The request is satisfied by assigning
the minimal number of Physically AddressableUnits needed to hold that number of bytes.
In the event that the allocate method cannot satisfy the request, it blocks. When the mem-
ory replacement algorithm frees sufficient Physically AddressableUnits by swapping out the
contents of infrequently accessed virtual memory locations to their backing stores, it unblocks

and fulfills unsatisfied requests (see Section 6.6.3).

6.3.3 PhysicalMemoryChain

Since a virtual address range may be mapped to multiple, perhaps discontiguous, physical ad-
dress ranges, individual PhysicallyAddressableUnits are not always convenient data struc-
tures with which to manipulate arbitrary virtual address ranges. The PhysicalMemoryChain
class defines an arbitrarily connected collection of PhysicallyAddressableUnits. Physi-
calMemoryChains consist of a linked list of PhysicallyAddressableUnits, an aggregate
size, and a byte offset into the first unit (see Figure 6.7). These three entities are sufficient to
describe an arbitrary virtual address region by its physical memory addresses. PhysicalMem-
oryChains are the primary form in which memory regions are passed between objects in the
Choices virtual memory system. They describe memory regions for I/O and physical addresses
for AddressTranslations.

A PhysicalMemoryChain construction function builds the list of Physically Address-

ableUnits from arguments that specify a starting virtual address, a length, and the virtual
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memory in which the address range is valid. As it builds the list, the function invokes other
virtual memory system methods to make sure that the virtual memory specified in the argu-
ments is resident in physical memory (see Section 6.6.2). Also, reference counts kept in the
component PhysicallyAddressableUnits are incremented (by sending addlOReference). De-
stroying a PhysicalMemoryChain likewise decrements the reference counts of the component
PhysicallyAddressableUnits. The memory replacement algorithm will not move data held
in the memory managed by a PhysicallyAddressableUnit to its backing store in an at-
tempt to reclaim physical memory if the reference count of the Physically AddressableUnit
is non-zero.

Reliable I/0 is assured since the physical memory required for the I/O must first be included
in a PhysicalMemoryChain and then passed to the I/O subsystem. The physical memory will
be unavailable to the replacement algorithm until the I/O completes and the PhysicalMem-
oryChain is deleted. This is a good example of the utility of the object-oriented technique
of encapsulation within objects when applied to system programming. The Physically Ad-

dressableUnit reference counts do not need explicitly updated by the I/O system. Creating
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and destroying PhysicalMemoryChains automatically manages these reference counts and

therefore automatically locks the corresponding logical memory resident in physical memory.

6.4 Backing Storage Management

The MemoryObject class defines an abstract signature for accessing the backing storage of a
collection of logically related data. In Choices a MemoryObject is viewed as a sequence of
identically sized indexed storage units. A unit size of one byte models a byte stream, while a unit
size of 512, 1024, 2048, or 4096 bytes can be used to represent blocks on a disk device.? Instances
of concrete classes implementing the MemoryObject signature represent the backing storage
for data corresponding to program instruction segments, stacks, disks, heaps, data spaces, and
files. They appear throughout the operating system and encapsulate physical disk drivers, disk
partitions, files, and even the instruction and data sections of an executable program file. In
this way they span the storage hierarchy representing everything from low level disk devices
to high level files. Current MemoryObject subclasses have been implemented to represent
physical disks, disk partitions, sub-ranges of other MemoryOb jects, Berkeley UNIX inodes,
System V UNIX inodes, MS-DOS files and other new and experimental file system structures
[MCRL88, MLRCS88, Mad91].

The MemoryObject numberOfUnits and unitSize messages return the number and the size
of the units respectively. Subclasses of MemoryObject may choose to make the number of
units fixed, or may allow it to grow. The setNumberOfUnits message exists to allow sub-
classes to let the number of units to be decreased or increased. Sending setNumberOfUnits
with a value less than the current number of units will truncate the data the MemoryOb ject
represents and decommit any storage used by the freed units. Sending setNumberOfUnits with
a value greater than the current number of units will grow the MemoryObject to that size.
Reading the data in the growth area will initially return a data full of zeros. Concrete classes
that implement fixed size MlemoryObjects can choose to ignore sends of setNumberOfUnits
and return an error. The offsetToUnit and unitToOffset messages convert byte offsets into unit

indices and vice versa. The message read and write take as arguments, an index, the number

* Although not necessary, but for the sake of implementation simplicity and efficiency, the size of a unit was
chosen to always be an integer power of two.

91



of units to be read or written, and a PhysicalMemoryChain. They cause the corresponding
units within the MemoryObject to be accessed. The PhysicalMemoryChain provides the
locations of physical memory blocks that are to be used in the read or write operation. Reading
and writing to regions described with physical addresses provides a virtual memory mapping-
independent mechanism for I/O. This is important since most I/O devices perform I/O using
physical memory addresses, not virtual memory addresses. Concrete MemoryObject classes
are free to make writing a unit greater than the current number of units an error, or to grow
the MemoryObject out to that size.

Finally, the MemoryObject class accepts the makeResidentInPhysicalMemory message to
guarantee that a set of units within it are buffered in physical memory. The implementation of

this message will be discussed in Section 6.6.2.

6.4.1 MemoryObjectViews

A MemoryObject represents a logical memory backing store. Actual physical backing storage
usually takes the form of disks or drums. Partitioning multiple address spaces into multiple
logical regions each managed by a MemoryObject will result in many more logical backing
stores than physical disks (also represent by MemoryObjects) on an average computer. This
situation is handled in Choices by introducing the MemoryObjectView subclass of Mem-
oryObject. A MemoryObjectView, as its name implies, represents a subrange of another
MemoryObject. With MemoryObjectViews, large MlemoryObjects can be partitioned
up into smaller MemoryObjects used to store logical data. Subclasses of MemoryOb-
jectView manage mapping to contiguous or discontiguous ranges of underlying MemoryOb-
jects. For example, a disk in Choices is represented by a MemoryObject that is similar to
a traditional device driver in that it can read and write the physical disk. Such a Memory-
Object is then broken up into partitions by creating instances of MemoryOb jectPartition.
MemoryObjectPartition is a subclass of MemoryObjectView that manages a contiguous
region of an underlying MemoryObject. Each of these partitions are then further broken up
into files by using instances of subclasses of MemoryOb jectView which handle discontiguous
regions of the underlying MemoryObject. Examples include BSDInode, which recognizes
the format BSD UNIX files take, or MSDOSFile, which recognizes the format of MSDOS files.
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6.4.2 Alternate Implementations of read and write

Many alternatives exist for the type of the source and destination arguments for the Memo-
ryObject read and write message.® One possibility is to use a starting virtual address and a
length. However, since sending read and write to most MemoryOb jects eventually results in
traversing layers of MemoryObjectViews until a MemoryObject representing a physical
disk is arrived at, and most physical disks expect to perform I/O to physical memory locations,
this requires a virtual to physical memory translation of the argument to be performed by
the read or write methods of the low level physical disk driver MemoryObject. This would
increase the dependencies in the memory management system since MemoryObjects, which
should only deal with backing storage, would need to reference objects managing virtual mem-
ory. Such dependencies are reminiscent of the cyclical dependencies in layered systems. This
scheme also restricts the implementations and uses of MemoryObjects as well. An instance
would need to have available a description of the virtual address space in which the argument
data is coming from or going to. For example, consider that it is convenient to place the low-
est level MemoryObjects that drive devices like the disk in system (protected) memory and
execute their methods in a privileged mode. If address arguments were virtual address ranges,
the abstract MemoryOb ject protocol would require read and write to have an argument that
specifies the virtual memory within which to perform the translation. Additionally it would
be necessary for the virtual memory system to support the access of arbitrary addresses in
arbitrary virtual address spaces.

An alternate implementation that solves the previous solution’s problems is to use a starting
physical address and a length rather than a virtual address. This suffers from the problem
that even though a range of virtual memory may be stored contiguously on backing storage to
promote locality and efficiency of accesses, it may not be contiguous in physical memory. Passing
a single physical address and a length cannot take advantage of the potential contiguity on
backing storage since a virtual address range would have to be decomposed into its component
physical ranges and each of those read/written individually.

PhysicalMemoryChains solve both these problems since, although a PhysicalMem-

oryChain represents a contiguous logical entity in virtual memory, it may include disjoint

®In fact each of the following possibilities was tried first before the development of the design presented here.
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blocks of physical memory. Therefore, a virtual address range’s logical contiguity can be taken
advantage of allowing it to be read from, or written to, its backing store in a single request.
Also the use of scatter/gather direct memory access hardware techniques like those supported
by IBM/370 architecture device channels[IBM88b] (which were designed specifically for such

applications) is facilitated by this locality and the information in PhysicalMemoryChains.

6.5 Buffering MemoryObjects in Physical Memory

Applications usually access the logical data of a MemoryObject by mapping it directly to an
address range within a virtual address space. The data of such a MemoryObject can then
be accessed by the processor’s instructions. Examples of such MemoryObjects include those
that represent the instructions or data of an executing application program. MemoryOb ject
data can be accessed either through the virtual memory system in this way, or it can be accessed
indirectly off backing storage by copying portions of it into application buffer memory. This is
accomplished by sending read and write to the MemoryObject directly. Such indirect access
of a MemoryOb ject’s data usually suffers from access latency and limited device throughput.
Memory must also be (redundantly) committed to buffer the data before processing it.

The class MemoryObjectCache provides an abstract signature for mapping a Memo-
ryObject’s data into physical memory using the functions provided by the physical memory
management classes (see Figure 6.8). Concrete classes implementing the MemoryOb ject-
Cache signature provide specific schemes or dynamic caching techniques to map all, part, or
none of the data. Each MemoryObject bound to a virtual address range in any number of
virtual address spaces has a uniqgue MemoryOb jectCache responsible for caching its logical
data in physical memory.

Mapping a MemoryObject to a virtual address range does not not change the function-
ality of MemoryObjects, instead, it simplifies access to their data. Rather than first having
to be explicitly copied into buffers, mapping a MemoryObject’s data to a virtual address
range allows data to be transparently accessed by the instructions of the computer. The virtual
memory system takes care of moving data to and from backing storage. Also, since a Mem-
oryObject can be bound to different address ranges within different virtual address spaces,

but is cached in physical memory only once (by its MemoryObjectCache), its data is never
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Figure 6.8: Graphic representation of a MemoryObjectCache

redundantly buffered. This avoids memory waste as well as the cost of keeping multiple buffers
coherent.

Sending the cache message to a MemoryObjectCache causes a region of the data of the
MemoryObjectCache’s associated MemoryObject to be made resident in physical mem-
ory. The cache message has a starting unit and number of units as arguments and returns a
PhysicalMemoryChain describing the physical memory caching this region. If the region is
not resident, the cache method first sends the allocate message to a Store to obtain a Physi-
calMemoryChain describing a region of sufficient length. Next, it sends the read message to
the corresponding MemoryObject with this PhysicalMemoryChain as an argument (see
Section 6.4).

Sending the selectUnitForRemoval message to a MemoryObjectCache causes it to select
one of the currently resident data units for return to backing storage. Concrete classes imple-
menting the MemoryObjectCache signature use this to affect the policy they implement for

caching logical data in physical memory. Sending the release message to a MemoryObject-
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Cache along with a unit number as an argument causes the corresponding unit to be actually

be returned to its backing storage.

6.6 Virtual Memory

The previous sections describe the manipulation of the dynamic address translation hardware,
the management of backing storage, and the caching of the data encapsulated by a Memory-
Object into physical memory. This section introduces the Domain class, which ties together
the previous classes and provides the primary virtual memory abstraction. This section also

details memory fault processing and memory replacement processing.

6.6.1 Domains

Instances of Domain are the top level abstraction of the virtual memory system. A Domain
maintains a collection of MemoryObjects and associated access rights together with a map
of these into a complete virtual address space (see Figure 6.9). Each MemoryObject maps a
range of addresses in the address space. Therefore, using the mechanisms discussed so far, Do-
mains provide for multiple virtual address spaces mapped to multiple logical memories, each

represented by a MemoryObject. Each Domain also has an associated AddressTransla-
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tion that it uses to affect its virtual memory mappings. Consistency of a MemoryObject
shared by multiple Domains is ensured since each MemoryObject has a single Memory-
ObjectCache (i.e., the virtual memory of all the sharing Domains will be mapped to the
same physical addresses). MemoryObjects can also map to different regions of different (or
the same) Domain.

The three most important operations in the Domain signature are add, remove and fixFault.
Adding a MemoryObject to a Domain binds a virtual memory range to the data managed
by the MemoryObject. The add message can either bind a MemoryObject to a specified
virtual memory subrange or allocate a range of memory sufficient to map it. Removing a
MemoryObject from a Domain causes any mappings to that MemoryObject’s data to be
invalidated (see Section 6.6.4). The fixFault message is sent to process a missing memory fault
as described in Section 6.6.2.

Sharing a MemoryObject between different Domains (see Figure 6.10) is simple in Choi-
ces. Because a MemoryObjectCache is independent of any virtual memory address, a

MemoryObject’s data can be mapped into different ranges of virtual addresses in different
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address spaces.® Since Domains assign access rights, the data can also have different access
rights in different address spaces.

In Choices the operating system objects are partitioned among a set of MemoryObjects
that are in every Domain but mapped as only accessible while executing in the privileged mode
of the processor. Examples of such MemoryObjects are those containing the objects necessary
to process address translation errors (Domains and AddressTranslations), the objects used
to fetch missing data from permanent storage (MemoryObjects corresponding to physical
devices), and the objects necessary for context switching (see Chapter 7). The data of these
MemoryObjects is locked resident in physical memory by creating PhysicalMemoryChains
describing all of the memory, and never deleting these PhysicalMemoryChains.

A MemoryObject’s data can be shared by different Domains residing on different nodes
of a distributed system. Each node sharing the logical memory has a local MemoryOb ject
and MemoryObjectCache for the data and uses a cache coherence protocol to keep them

consistent. Such a system is implemented in [Joh91].

6.6.2 Missing Memory Fault Processing

Data must be moved into physical memory before it can be accessed by the processor. When a
program accesses a virtual address that generates a missing virtual memory error, the handler
for that error first sends the determineFaultCode message to the current AddressTranslator
to determine the condition that caused the fault. The fixFault message is then sent to the
current Domain using the faulting virtual address and the fault condition as arguments. The
implementation of the Domain fixFault method then attempts to correct the faulting condition
(usually by bringing missing virtual memory into physical memory), or raises another exception
(see Section 7.7) if the fault cannot be repaired.

In order to keep the Domain’s mappings of virtual address data consistent in the presence
of simultaneous faults on a multiprocessor, fixFault currently locks the Domain to permit only
one fault per Domain to proceed at a time. This restriction is actually a result of the current
implementation of Domain and can be corrected by keeping multiple locks, one per range of

addresses, per Domain.

®Obviously this only makes sense if the MemoryObject contains position independent data. Files and disks
are good examples.
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The fixFault method next converts the faulting address (passed as an argument) into a
MemoryObject reference and an offset within the data of that MemoryObject. The fix-
Fault method ensures that the corresponding logical memory block is cached in physical memory
by sending the makeResidentInPhysicalMemory message to the resultant MemoryObject. The
makeResidentInPhysicalMemory message takes a range of MemoryObject units as an argument,
uses the corresponding MemoryObjectCache to obtain the corresponding Physically Ad-
dressableUnits by sending the cache message to the MemoryObjectCache.

The cache method first locks the MemoryObjectCache to prevent inconsistencies intro-
duced by multiple invocations of cache on multiple processors. Again, the amount of locking
here is implementation dependent. For example, a single lock could protect all the units of a
MemoryObjectCache, or the units could be divided up into groups with one lock per group.
Next, the cache method determines if the data required are already in a set of PhysicallyAd-
dressableUnits. If not, new PhysicallyAddressableUnits are allocated from the Store and
the data are transferred into them by reading the corresponding MemoryObject.

Once the proper PhysicallyAddressableUnits have been determined, their references to
active AddressTranslations, along with the inverse mappings, need updated. This is accom-
plished by locking the Physically AddressableUnit, setting an AddressTranslation/virtual
address tuple (an existing one is replaced if necessary as described in Section 6.3.1), sending
addMapping to the AddressTranslation to set the mapping in the other direction (and to ac-
tually reflect the mapping in hardware), and unlocking the Physically AddressableUnit. The
information indicating for which MlemoryObjectCache the Physically AddressableUnit it
is holding data is also updated. Once all this has been done for all Physically Addressable-
Units containing the data, the lock on the MemoryObjectCache data is released and the
cache method returns. Finally, the Domain lock is released and the fixFault method returns.

At this point the faulting instruction can be restarted or resumed.

6.6.3 Memory Replacement

Periodically, or when a Store runs of of memory, a “page-out” algorithm runs to maintain
adequate free memory for future Store allocations. Choices can support both global (Phys-
icallyAddressableUnit based) and more localized (MemoryObjectCache based) virtual

memory replacement algorithms.
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A global replacement algorithm incrementally scans all the Physically AddressableUnits
in the system and extracts usage information on which to base its page replacement decisions.
Policies such as global working set[Den68] or global least recently used[BS88] can be imple-
mented with such a scheme.

A MemoryObjectCache specific, replacement scheme scans all active MemoryObject-
Caches rather than Physically AddressableUnits. This allows the MemoryObjectCaches
to impose localized memory replacement since MemoryOb jectCache subclasses can specialize
the selectUnitForRemoval message to apply specific replacement policys to the physical memory
allocated to the MemoryObjectCache

When using either algorithm, the memory replacement mechanism reaches a point where it
has the unit number within a MemoryObjectCache that needs to be removed from memory.
In the global case this information is found by sending the currentCache message and unitNumber
messages to the PhysicallyAddressableUnits chosen to be reused. In the local algorithm,
this information is known automatically, since the MemoryOb jectCache itself is choosing to
do the replacement of its own units.

In either case, memory replacement proceeds by sending the release message to the Memo-
ryObjectCaches to free physical memory. The MemoryObjectCache first locks its internal
data structures for consistency in the presence of possible concurrent invocations of cache for
memory fault processing (see Section 6.6.2). Next, all AddressTranslations actively ref-
erencing any PhysicallyAddressableUnits need to have such mappings invalidated. This
proceeds by first locking the Physically AddressableUnits, following each AddressTrans-
lation pointer and sending removeMapping to the corresponding AddressTranslation. The
removeMapping method will transfer any referenced or modified information kept by the hard-
ware mappings back to the Physically AddressableUnit.

Once this is complete, the PhysicallyAddressableUnit can be unlocked. After this has
been done for all Physically AddressableUnits holding the data being removed, the release
method can inspect each PhysicallyAddressableUnit and return any modified data con-
tained in them back to its backing storage.

Selected units that have not been modified can just be returned to the Store and marked
non-resident in the MemoryObjectCache’s tables. Whether the unit has been written or

not can be determined by sending the modified message to the corresponding Physically Ad-
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dressableUnits. The modified method indicates whether a physical memory block has been
modified since it was last read from the MemoryObjectCache’s corresponding Memory-
Object. This information is guaranteed to be up to date since there will no longer be any
AddressTranslations mapping to the PhysicallyAddressableUnits and no new ones can
be added since the MemoryObjectCache lock on the logical units is still held.

Modified units must be returned to their backing storage. To achieve this, the release method
builds PhysicalMemoryChains to represent all of the PhysicallyAddressableUnits con-
taining modified data. The release method then writes all of the MemoryObjectCache’s
units that have been modified to its MemoryObject, ensuring the consistency of the data on

backing storage.

6.6.4 Removing a MemoryObject from a Domain

Sending the remove message to a Domain deletes the mapping between a virtual memory
range and a logical memory. First, the remove method locks the Domain and removes all
references to the corresponding MemoryObject in the Domain. This keeps new missing
memory faults from attempting to bring new data in from the MemoryObject. The Do-
main is then unlocked. Next, the Domain sends removeMapping to its corresponding Ad-
dressTranslation to invalidate all hardware physical address translation mappings for the
corresponding virtual address range. This also updates reference and modification information
in those Physically AddressableUnits that correspond to the physical memory blocks stor-
ing resident data (see Section 6.3.1). Finally, if the MemoryObjectCache corresponding to
the MemoryObject is not referenced by any other Domain, then it is deleted. Deleting the
MemoryOb jectCache will force any modified resident data to the backing store and return
any physical memory to the Store it was allocated from by sending the Store the deallocate

message.

6.7 Performance

The performance of a memory management system is limited by the speed of the backing storage

devices. On the Encore Multimax version of Choices, a transfer of one page (4K) of data to
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or from a physical disk takes on the average 23.6 ms.” Disk seek and rotational latency can as
much as double this time. Under Choices on the Multimax, processing a missing memory fault
takes as a minimum 25.1 ms from the time the process traps into the operating system until
it is resumed. This indicates that the minimum overhead the Choices memory management
system imposes for processing missing memory faults is approximately 1.5 ms. Sending the
determineFaultCode to the current AddressTranslator takes approximately 215 us. Looking
up which MemoryObject is managing a particular virtual address takes approximately 250
us. Sending the addMapping message to an AddressTranslation takes approximately 300 us.
The remaining time is spent in the makeResidentInPhysicalMemory method of MemoryObject.

A more useful measurement of the Choices memory management system is how well it
compares to other systems. Without the source to the UNIX operating system, it is impossible
to get numbers as detailed as those above. However, it is possible to run a program with poor
paging performance on both UNIX and Choices and compare the results. The test chosen was
to zero fill four megabytes of memory in a tight loop. Running under the UNIX operating
system on the Encore Multimax, this test takes 11.6 seconds to execute. Under Choices the
same program takes 12.1 seconds to execute. With 4 kilobyte pages, zero filling 4 megabytes
of memory causes 1024 page faults. The difference between the UNIX results and the Choices
results is 0.5 seconds. Dividing this additional overhead by the number of page faults indicates
that Choices imposes approximately 488 ps over UNIX for processing a page fault. As currently
implemented, most of the Choices memory management algorithms are rather simplistic and

inefficient. It should not be hard to improve them.

6.8 Summary

The Choices memory management system provides a portable virtual memory system that is
compatible with a wide range of architectures. It provides both a flexible and extensible model
of virtual memory.

Reducing the architecture dependencies to just two classes facilitates portability across a
wide range of architectures. Likewise, as discussed in Section 6.2.1, concrete classes implement-

ing the AddressTranslation and AddressTranslator signatures for similar architectures can

"The data in this paragraph were collected by Aamod Sane and Taed Nelson.
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share a great deal of code through inheritance. The address translation classes are not the only
classes that benefit from code sharing. MemoryObject classes for similar backing storage
representations of data can share significant code[Mad91].

The MemoryObject class signature is an interface for storing data to and retrieving data
from backing storage. Numerous policies for the management of backing storage can be im-
plemented by concrete classes implementing the MemoryObject signature. Likewise, the
MemoryObjectCache signature defines an interface for caching portions of a MemoryOb-
ject’s data in physical memory. Different policies for the management of this caching can be
implemented by concrete MemoryObjectCache classes.

The encapsulation provide by object-oriented programming also allows the simplification
of many memory management issues. In particular, PhysicalMemoryChains simplify the
temporary locking of virtual memory addresses to physical memory addresses while I/0 is
being performed. Creating and destroying PhysicalMemoryChains automatically manages
reference counting physical memory ranges. The memory replacement algorithms have the
proper information to detect that a range of physical addresses is being used in an 1/O request
without the explicit coding of locking primitives. Creating a PhysicalMemoryChain, which
is necessary to do the I/O operation in the first place, manages the locking.

In summary, the design and implementation of the Choices memory management system
shows that many of the claims made in Chapter 4 for the construction of object-oriented

operating systems are easily realizable.

103



Chapter 7

Process Management

7.1 Overview

The concept of a process! is fundamental to all modern kernel-based operating systems. A pro-
cess represents a program in execution[Dei84a]. An individual control path through a program
in execution is perhaps a more precise definition since a program may have multiple concurrent
execution paths.

In traditional systems, an individual process follows a control path between a program’s
various functions and procedures. As discussed in Chapter 3, an object-oriented system is
characterized by messages being sent to objects in order to perform computation. These message
sends cause object methods to be invoked. Therefore, with respect to object-oriented systems, a
process follows a control path between object methods. In both object-oriented and traditional
systems, each process has a current execution point (the address of the instruction it is currently
executing). The current execution point of a process in a traditional systems is always within
a particular procedure or function. In an object-oriented system the current execution point is
always within a particular method. Message sends cause the current execution point to move
from method to method of various objects (see Figure 7.1).

Details of process management for an operating system are very low-level and architecture
specific. The Choices process management system is an excellent demonstration of how object-

oriented programming can support such low-level details without sacrificing performance. The

1Some systems use the term task or agent.
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Figure 7.1: Flow of control from method to method

goal of the Choices process management system is to support an efficient implementation of a
model of an application composed of a potentially large number of parallel processes that can
share portions (or all) of their address spaces. In this way, Choices processes are similar to
the processes of the V System[Che88], threads in Mach[T*87] and lightweight processes in the
extensions to UNIX described in [MS87, Seq85a, Enc86].

As with most operating systems, Choices characterizes a process by an address space de-
scribing the memory it can access and the state of the processor that is executing it. This state
is usually referred to as the process’s contert. Every computer has one or more processors. In
Choices, like any multiprogrammed system, processors need to be shared between processes.
While a process is active on a processor, its context is reflected in that processor. When the
process is not active on a processor, its context must be saved. A process is said to be ez-
ecuting when it is active on a processor. In order to transfer the processor between various
processes, an operating system must implement primitives to allow it to switch the physical
processor between the contexts of different processes. This is usually termed context switching.

Choices implements its process model using the object-oriented paradigm. All processes are
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represented as objects (instances of the Process class) and their execution is manipulated by
sending messages to those objects. In particular, context switching is implemented by sending
messages to Processes.

In Choices, a context switch occurs when one process relinquishes the processor to an-
other. This usually happens as the result of a process’s control flow reaching a method of a
synchronization or scheduling object. Examples of such objects include those implementing
semaphores, monitors, or time-sharing schedulers. Figure 7.2 shows an example of context
switching in Choices graphically. The small solid circle represents the execution point of the
physical processor. Solid arrows represent message sends causing the flow of control to move
from method to method. Dashed arrows represent a control flow change that is caused by some
form of process exception (a trap or interrupt). The shaded circles represent methods of syn-
chronization objects that perform process scheduling or synchronization functions. Invocations
of such methods eventually return like any other method invocation, except that there is no
guarantee that the processor has not been assigned to another process and back in the mean
time. Likewise, there is no guarantee that the process resumes execution on the same processor
that it was executing on when it first sent the message to the synchronization or scheduling
object.

In Choices, multiple processes can share data by sharing portions of their address spaces. An
application in Choices consists of an address space and one or more processes to follow the flows
of control through the application’s program. A single application’s processes all execute in its
(shared) address space. Multiple applications can cooperate and share data by sharing portions
of their address spaces. This allows processes within and across applications to exchange data

by placing values in the shared memory for other processes to retrieve.?

Programmers can
use multiple processes to program concurrency and parallelism in their programs. If context
switching is expensive, the cost of using multiple cooperating processes may be prohibitive.
Choices uses object-oriented techniques to optimize this expense.

The normal flow of control of a process can be altered by one of two events. First, an

interrupt[PS85] may occur. Interrupts usually occur as the result of devices requiring attention

from the operating system[BS88]. This may be the completion of an earlier I/O request, or an

2Such accesses may require mutual exclusion. This must be guaranteed by higher level synchronization
primitives.
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Figure 7.2: Overview of Choices process management
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unexpected event such as a power failure or device failure. Second, the process may execute an

instruction that, for various reasons, may not be able to be completed. Examples include:
e attempting to divide-by-zero.

e executing a floating point operation where the result overflows the floating point repre-

sentation.
e executing an illegal or privileged instruction.
e executing an instruction that causes dynamic address translation to fail.

e executing an SVC or trap instruction.

Such conditions will be referred to as program traps. In Choices, both traps and interrupts are
generically termed ezception conditions or exceptions. When an exception occurs, a message is
sent to an exception handling object to correct the condition and then resume the process. If
the exception is fatal and the process cannot be resumed, it is terminated. A useful exception
management architecture for an operating system must be efficient enough to allow rapid cor-
rection or processing of an exception condition or, if that is not possible, graceful termination

of the process responsible for generating the exception.

7.2 The Choices Process Management Classes

The Choices process management and scheduling system is divided into four major abstract
classes.

1. The Process class represents a process and its context.

2. The Processor class represents a physical processor.

3. The ProcessContainer class represents a repository of Processes.

4. The Exception class provide an encapsulation of trap and interrupt handlers.

In Choices, a unique Process object exists to represent each process.> The Process class

defines the giveProcessorTo message to implement context switching. This message is sent

®The distinction between the term process with a capital P (Process) and a without (process) is that the
former will be used when referring to an instance of a class with the Process signature while the latter will be
used to refer to the logical entity that it represents.
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from within synchronization and scheduling objects to the current Process in order to effect
processor sharing.? The giveProcessorTo message takes a single argument: the next Process
to run.

Primitives for scheduling and blocking processes in Choices are built using instances of
classes in the ProcessContainer hierarchy. A ProcessContainer, as the name implies,
is a repository of Processes. Scheduling decisions involve transferring Processes between
ProcessContainers and switching the processor to the contexts of processes that are removed
from ProcessContainers.

The Exception class encapsulate the handlers for interrupts and traps. When a trap or
interrupt occurs, low level architecture specific code is invoked by the hardware interrupt mech-
anism to save some of the currently executing process’s context and send the handle message
to an Exception object corresponding to the trap or interrupt.

Eventually, either involuntarily as the result of an exception or voluntarily, a process invokes
giveProcessorTo to affect a context switch to another process. For example, consider implement-
ing a semaphore[Dij68]. When a semaphore P operation is performed, if the semaphore is busy,
the currently executing process needs to be blocked and another process run. In Choices, this
occurs by arranging to have the current process placed in a queue of processes blocked on the
semaphore, choosing another process to run from the queue of ready to run processes, and send-
ing the giveProcessorTo message to the current Process with the new Process to run as an
argument. Both the queue of processes blocked on the semaphore, and the queue of processes
ready to run are represented by ProcessContainers. When a V operation is performed on
the semaphore, a blocked process can be removed from the semaphore’s blocked process queue
and added to the queue of ready to run processes.

The Choices process management classes are presented in detail in the following sections.
Special attention is paid to how object-oriented programming and design have benefited its
design and construction as well as supported optimizations of the model in a clean and modular

manner.

*The thisProcess() function exists to obtain a reference to the current Process.
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Figure 7.3: Some subclasses of the Process class
7.3 The Process Class

Subclasses of Process (see Figure 7.3) represent different kinds of processes. Each subclass
reflects the requirements of the kind of process it represents. For example InterruptProcesses
represent processes that manage device interrupts, ApplicationProcesses represent applica-
tion program processes, SystemProcesses represent operating system management processes,
and UninterruptableSystemProcesses represent very high priority system processes.

Each Process forms a repository for a process’s context while the process is not active.
Therefore, it stores the information necessary to resume the process’s execution on a (possibly
different) processor. Likewise, a Process is the object to which messages are sent to alter a
process’s context. For example, a Process can be sent messages to disable or enable interrupts,
or set scheduling parameters or priorities. For efficiency, the amount of information kept per-
process, and the context switching effort between two processes, is minimized. The context
switching overhead in Choices is based on the kind of process relinquishing the processor and
the kind of process being given the processor.

When a new process is created, the corresponding Process is parameterized by a Domain,
a stack, an initial execution address, and arguments to the procedure at this address. The
Domain argument defines the virtual address space within which addresses generated by the
process are resolved (see Section 6.6.1). Usually the executable code, initialized data, uninitial-
ized data, and stack are represented as separate MemoryObjects within this Domain. The
initial execution address (specified as a method to initially invoke®) is a location within the

address space defined by this Domain. It represents the initial value of the process’s program

®Returning from this method terminates the execution of the process.
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counter register.® The stack argument is a block of memory within the process’s address space
used by the process as its execution stack.

Each process in Choices shares memory with other processes through the memory manage-
ment mechanisms described in Chapter 6. If the Domain argument used in the construction of
a new Process is the same Domain as the process creating the new process, the new process
will share all the memory of the creating process.” If it is an entirely disjoint Domain, the new
process shares no memory with the creating process.® Or, if it is a Domain that the creating
process has constructed containing only some of the same MemoryObjects as its own Do-
main and some other MemoryObjects, the new process shares only a portion of the creating
process’s address space. This latter case, and that once a process is executing it can modify
its own Domain by adding or removing MemoryObjects, allows arbitrary shared/private
regions to be set up between cooperating processes.

The context of a process takes a different form on every computer architecture. Usually it
consists of a set of register contents, a program counter and a stack pointer. In order to increase
portability by localizing architecture dependencies in as few places as possible, the state of a
process in Choices is actually split between two objects, a Process and a ProcessorCon-
text. Processes encapsulate all of the processor architecture independent information about
a process. This information consists mainly of scheduling information and a reference to the
process’s Domain. The processor architecture dependent context of a process is kept in an
associated ProcessorContext. ProcessorContext defines messages to be sent during con-
text switching to save (the checkpoint message) and restore (the restore message) the processor
architecture dependent context of a process. Subclasses of ProcessorContext represent the
saved context of a process for specific architectures. Subclasses of these classes further refine
the ProcessorContext checkpoint and restore methods to handle specific kinds of Processes
on these architectures (see Figure 7.4).

The Process class defines messages for context switching, manipulating scheduling parame-

ters, and enabling and disabling interrupts (the becomeUninterruptable and becomelnterruptable

Various architectures give this register different names but the concept remains the same. It is the address
of the current execution point.

"This form of sharing is similar to how a parent and child process share memory across the UNIX wvfork
primitive[BSD84]. The difference being that the two processes share all the memory. This allows the new
process access even to the creating process’s stack.

8 This form of process creation is similar to the UNIX ezec primitive.
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Figure 7.4: Sample subclasses of ProcessorContext

messages). The becomeUninterruptable and becomelnterruptable messages are actually forwarded
by a Process to its corresponding ProcessorContext object since they are architecture de-

pendent operations.

7.3.1 Choices Application Processes

Since the operating system must protect itself from application programs, processes executing
on the behalf of applications do not execute in the privileged mode of the processor. This
prevents application programs from accessing system objects. Chapter 5 discussed the way
Choices allows application programs access to select system objects in a controlled manner.

Application processes do, however, need to execute system code when interrupts or traps oc-
cur. Choices supports this by implementing an application process as a pair of coroutines[Con65,
Knu73]: the system coroutine and the application coroutine. These two coroutines have sepa-
rate control stacks. The system coroutine runs in the protected mode of the processor with its
stack in system protected memory. The application (or an application support library) manages
the application coroutine’s control stack. All Choices processes share this model but some (the
system processes) have a non-existent application coroutine.

The application coroutine is the part of a process that executes the code of application

programs and, therefore, is completely untrusted by the operating system. It executed in
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Figure 7.5: Application process coroutines

the non-privileged mode of the processor. The application coroutine never executes operating
system code directly. Only the system coroutine does. For example, when a process crosses the
system/application barrier by using the ObjectProxy mechanism described in Section 5.1.2,
it traps into the operating system. The privilege level of the processor is raised and the system
coroutine is resumed (see Figure 7.5). Resumption of the system coroutine can also occur as the
result of any other trap or an interrupt. The Choices exception handling mechanism discussed in
Section 7.7 is used to handle voluntary traps (usually ObjectProxy invocations), involuntary
traps (program execution exceptions), and interrupts by resuming the system coroutine when

any of these exceptions occur.

7.4 The Processor Class

A physical processor in Choices is represented by an instance of the Processor class. Multipro-
cessors are handled by having multiple instances of Processor, one per physical processor. An
executing process can use the thisProcessor() function to obtain a reference to the Processor
object managing the physical processor on which it is currently executing. Processor is an

abstract class subclassed for each physical processor type to which Choices is targeted. Besides
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process scheduling, it provides other processor specific functions such as finding the handler for

a particular trap or interrupt.

7.5 The ProcessContainer Class and Scheduling

ProcessContainer is an abstract class defining a signature for the storing and retrieving of
Processes. This signature includes the messages add (for inserting Processes into the con-
tainer), remove (for removing Processes from the container), and isEmpty (for testing whether
the container contains any Processes or not). Subclasses of ProcessContainer impose queu-
ing disciplines on the processes that they contain by implementing the add and remove methods
to, for example, add Processes and remove them in FIFO or priority order.

Process scheduling in Choices follows the traditional running/ready/blocked model[Dei84a],
but supports it within the Choices object-oriented framework. All queues of processes are

represented as ProcessContainers.

7.5.1 The Per-Processor Container

In the running/ready/blocked model of process scheduling, all processes that could execute
as soon as a processor is free are kept in the ready-queuve. In Choices, the ready-queue is a
ProcessContainer. Multiple ready-queues are supported and each processor may be assigned
a different (or shared) queue. Having multiple ready-queues allows the partitioning of pro-
cesses among groups of processors in a multiprocessing system. Each Processor references a
ProcessContainer as its ready queue. This reference is stored in an instance variable named
idleContainer since it refers to the ProcessContainer from which a Process is removed when
the processor is idle.?

Sending the getNextReadyProcess message to a Processor returns the next process from
that Processor’s ready-queue. Scheduling and blocking objects send this message to select
another process to run if they are not relinquishing the processor to a predetermined process.

A typical example is when a process blocks on an I/O request.

® An idle processor results when the process currently executing on the processor invokes a method on a
scheduling object that results in the processor being relinquished. Examples of this case include invoking the P
operation on a busy semaphore, or blocking for an I/O completion.
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The getNextReadyProcess method removes a process from the Processor’s idleContainer. If
the idleContainer is empty, getNextReadyProcess returns the Processor’s idleProcess, which is a
process that is always ready to execute. A Processor’s idleProcess is always ready to execute
since it just loops with interrupts enabled until another process is ready to run (the idleContainer
is no longer empty). When another process is ready to run, the idleProcess relinquishes the

processor to that process by sending itself giveProcessorTo.

7.5.2 The Per-Process Container

Since Choices supports multiple ready-queues, a mechanism is needed to decide in which queue
a newly ready process belongs. This is solved by each Process maintaining a reference to the
ready-queue to which it will be added when it is ready to execute. The reference is stored
in an instance variable named readyContainer. A process’s readyContainer is initially set to its
creating process’s value.

Sending a Process the ready message adds the Process to its readyContainer. After a
Process is constructed and initialized, it is sent the ready message to allow it to run as soon
as a processor becomes available. The ready message is also sent to unblock a blocked process

after an I/O event completes or when a busy semaphore becomes free.

7.5.3 Scheduling Ready Processes

A traditional symmetric multiprogrammed system has a single ready-queue. This can be
achieved in Choices by having all Process readyContainers and all Processor idleContainers ref-
erence the same ProcessContainer (see Figure 7.6). This balances the processes evenly over
the processors by assigning each idle processor a process from the pool of all ready processes.
Such a ProcessContainer must provide mutual exclusion on its internal data structures since
it will require concurrent accesses by multiple processors. As the number of processors increases,
the number of invocations of add and remove will increase proportionally. The mutual exclusion
overheads may, therefore, lead to a bottleneck. In order to decrease contention, the ready-queue
function may be distributed between multiple ProcessContainers each assigned to a subset of
the available processors. Processes can then be migrated between these ProcessContainers

when processors are idle or overloaded in order to balance the load.
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Figure 7.6: A traditional multiprogrammed system

Another use of multiple ready-queues is to simultaneously support both real-time and time-
shared processes. One ProcessContainer could be dedicated to real-time processes and a
different one to non-real-time processes. The readyContainer of all real-time processes could ref-
erence the real-time ready queue, and that of the timeshared processes reference the timeshared
ready-queue (see Figure 7.7). The processors could be partitioned by setting the idleContainer
of some processors to the real-time ready-queue, and the remaining processor’s idleContainers
to the timeshared ready-queue. In this way, real-time processors would never be assigned to

timeshared processes. They would always be available for real-time processes only.

7.5.4 Deadlock and Race Avoidance

When a Process is added to a ProcessContainer, it can potentially be removed immediately
and run on another processor. Therefore, if a process adds itself to a container, it may begin
simultaneously executing on two processors. Even though this will only be the case for the
very short period of time until the first processor begins running another process, it could
be disastrous as both processors will execute with the same stack, overwriting each other’s
values. Therefore, a process is constrained to never add the Process representing itself to a

ProcessContainer.
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Figure 7.7: Processors partitioned between real-time and time-shared processes

Choices avoids the race condition by using a ContextSwitchResponsibility. A Con-
textSwitchResponsibility object to delegate the function of adding a running Process to
a ProcessContainer to the process selected to run next. When a process relinquishes the
processor it sends the giveProcessorTo message to the corresponding Process. Before doing
this, however, it assigns a ContextSwitchResponsibility to the process being given the
processor. The responsibility instance variable of a Process holds a reference to this Con-
textSwitchResponsibility. The ContextSwitchResponsibility class is abstract and de-
fines a single message, perform. This message is sent to the responsibility of a process just after
the process being given the processor is resumed, but before it returns to the point where it
relinquished the processor. The argument of the perform method is the Process that just re-
leased the processor. Sending the perform message to a Process’s responsibility can be thought
of as part of the “cost” of giving the processor to that process. The DefaultResponsibility
class is used when the process relinquishing the processor has no special needs. The perform
method of DefaultResponsibility simply sends the ready message to the argument process
so that it can execute again when a processor becomes idle. Other classes implementing the
ContextSwitchResponsibility signature usually redefine perform to place the Process in a

blocked or wait queue (see Section 7.8.2 for an example).
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A possibility of indefinite postponement is avoided in the Choices process management
system by disabling interrupts between the point just before a Process is removed from a
Processor’s idleContainer and the point that the currently executing process relinquishes the
processor. The indefinite postponement avoided is the delay of running of the removed process

due to the possibility of an interrupt occurring before the processor is relinquished.

7.6 Implementation of giveProcessorTo

The giveProcessorTo method saves the context of the current Process (the Process receiving
the message) and restores the context of the process represented by the argument. The argument
to giveProcessorTo is determined by a scheduling or synchronization object. The giveProcessorTo
message is the only mechanism with which to affect a context switch. The policy of which
processes to run is determined by other objects, such as an exception handling object or a
semaphore. Eventually, a Process that was sent giveProcessorTo will itself be an argument
to a giveProcessorTo message send. At this time, that process will resume execution and will
appear to have finally returned from the earlier invocation of giveProcessorTo.

The Process giveProcessorTo message is the interface Process presents for context switch-
ing. Most of the work of context switching is actually done by two separate Process messages
(save and restore) and two ProcessorContext messages (checkpoint and restore).

The full implementation of the giveProcessorTo method of Process is shown in Figure 7.8.
The method first sends the save message to the current Process to store any architecture
independent information about the process prior to relinquishing the processor. Once that is
completed, the checkpoint message is sent to the Process’s corresponding ProcessorContext.
This stores the architecture dependent context of the Process in the ProcessorContext
object. The way the checkpoint method of a ProcessorContext is actually implemented
parallels the setjmp/longjmp mechanism of UNIX[SVI85]. Sends of the checkpoint message
appear to return twice. The first time checkpoint returns is when the context is saved. The
value returned is a null reference. The second time checkpoint returns is when the context is
resumed from its saved state by another process. The value returned this time is a reference to

the Process that gave the resumed process the processor.
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Process::giveProcessorTo( anotherProcess )

{

/] save the architecture independent
/] information about this process.
save();

/] take a checkpoint of the current context.
processWhoResumedUs = context.checkpoint();
if( processWhoResumedUs == NULL ) {

/] you reach here when the process
/] first takes a checkpoint.
currentProcess = anotherProcess;
anotherProcess.context.restore();

}

/] you reach here when the process is
/] resumed by another process
restore( processWhoResumedUs );

Figure 7.8: The implementation of the giveProcessorTo method

Since checkpoint and restore have such abnormal behavior, and since they need access to the
entire state of the processor, they are implemented in assembly language in Choices. Figures 7.9

through 7.11 give the implementation of checkpoint and restore for a system process’s context!®

on a few common processors.!!

The first time checkpoint returns, the restore message is sent to the ProcessorContext of
the Process to be run next. That process then appears to return from its own earlier send of
the checkpoint message a second time. This is the point where the physical flow of control is
actually transferred between processes.

By the second time the send of checkpoint returns, the architecture dependent context of the

new process has been restored. The giveProcessorTo method then sends the restore method to

19The checkpoint and restore methods of subclasses of ProcessorContext for other kinds of processes only
differ in the amount of state saved.

T implemented the NS32332 version. Subsequently, Dave Dykstra implemented the 80386 version and Bjorn
Helgaas implemented the MC68030 version.

119



/] Upon entry to a method, the calling convention on the 32332 has put a pointer to
/] the ProcessorContext object itself in r0, and the first argument to

/] the method in r1. The return address will be on the top of the stack,

/] followed by any additional arguments to the method. Registers r0, rl

// and r2 are assumed not to be preserved across a procedure call.

/] The result of a function is returned in r0.

NS32332SystemContext::checkpoint()

{

{

/] first, save the general registers

movd r3, R3offset(r0)
movd 4, Rdoffset(r0)
movd 5, Rboffset(r0)
movd 6, R6offset(r0)
movd 7, R7offset(r0)

/] next, save the frame pointer
movd  0(fp), FPoffset(r0)

// next, save the stack pointer (actually
/] pretend the return address has been

// popped off the stack)
addr 4(sp), SPoffset(r0)

/] restart at the address on
/] the top of the stack
movd  0(sp), PCoffset(r0)

// return O when first called
movqd  $0, r0

/] return to the caller
/] the first time
ret $0
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NS32332SystemContext::restore( oldProcess )

/] first, restore the general registers

movd R3offset(r0), r3
movd  Rdoffset(r0), r4
movd R5offset(r0), r5
movd Ré6offset(r0), 16
movd R7offset(r0), r7

/] mnext, restore the frame pointer

lprd fp, FPoffset(r0)

/] mnext, restore the stack pointer

Iprd sp, SPoffset(r0)

/]| save the restart address in r2
movd  PCoffset(r0), r2

/] return the first argument

// (the process that called giveProcessorTo)
movd rl, r0

/] “‘return” from checkpoint the
/] second time
jump 0(r2)

Figure 7.9: The checkpoint and restore methods for the National Semiconduction NS32332



/] Upon entry to a method, the calling convention on the 80386 has put the return address on the
/] top of the stack, followed by a pointer to ProcessorContext object itself.

/] Any additional arguments to the method will follow on the stack. Registers %eax

/] and %edr are assumed not to be preserved across a procedure call.

/] The result of a function is returned in %eaz.

i386SystemContext::checkpoint() i386SystemContext::restore( oldProcess )
{ {
mov 4(%esp), %eax mov 4(%esp), Tedx
mov 8(%esp), %eax
mov %edi, EDIoffset(%eax) mov EDIoffset(%edx), %edi
mov %esi, ESToffset(%eax) mov ESloffset(%edx), %esi
mov %ebx, EBXoffset(%eax) mov EBXoffset(%edx), %ebx
mov %ebp, EBPoffset(%eax) mov EBPoffset(%edx), %ebp
mov %esp, ESPoffset(%eax) mov ESPoffset(%edx), %esp
addl $4, ESPoffset( %eax)
mov (%esp), PCoffset(%eax) mov PCoffset(%edx), %edx
mov $0, %eax
ret jmp *Pedx

Figure 7.10: The checkpoint and restore methods for the Intel 180386
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/] Upon entry to a method, the calling convention on the MC68030 has put the return address on the
/] top of the stack, followed by a pointer to ProcessorContext object itself.

/] Any additional arguments to the method will follow on the stack. Registers d0, d1, a0

/] and al are assumed not to be preserved across a procedure call.

/] The result of a function is returned in d0.

MC68030System Context::checkpoint() MC68030SystemContext::restore( oldProcess )
{ {

moveml d0-d7/a0-a6, a0@(RXoffset) moveml a0@(RXoffset), d0-d7/a0-a6

movel  sp@(8), dO

lea sp@(4), al

movel  al, a0@(SPoffset) movel  a0@(SPoffset), sp

movel  sp@, a0@(PCoffset) movel  a0@(PCoffset), a0

clrl do

rts jmp a0@

Figure 7.11: The checkpoint and restore methods for the Motorola MC68030

the current Process passing along the reference to the Process that relinquished the processor.
The Process restore method reinstates any architecture independent context of the Process
and sends the perform message to the Process’s responsibility. Finally, the giveProcessorTo
method returns and the process resumes execution.

When a new Process is created, its initial context is stored in a form suitable for the
Process and ProcessorContext restore methods to use. This allows new Processes to
begin execution at their entry point the first time they are the argument to a send of the
giveProcessorTo message.

The giveProcessorTo message must be invoked with interrupts disabled. This prevents par-
tially saved contexts occurring as the result of a context save being interrupted. Disabling
interrupts is usually guaranteed by meeting the condition that interrupts also be disabled when
a Process is removed from a Processor’s idleContainer. Thus, the normal chain of events for
a synchronization object that wishes to transfer the physical flow of control to a new process is

to:
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1. Disable interrupts if they are not already disabled. This is accomplished by sending the

current Process the becomeUninterruptable message.

2. Choose the process to run next. This might be determined by the object itself, as in the
case of invoking a V operation on a semaphore that has blocked processes, or by sending

the getNextReadyProcess message to the current Processor.
3. Set the responsibility of the process to run next.

4. Send the giveProcessorTo message to the Process object representing the current process.

The Process to run next is used as an argument.

5. Once control returns as the result of being given the processor back, re-enable interrupts
if they were enabled to start with by sending the current Process the becomelnterruptable

message.

7.6.1 Optimizing Context Switching

Many operating systems are designed to support lightweight processes. The goal of these systems
is to minimize the cost of using multiple processes by minimizing the cost of context switching
between them. The performance of using multiple processes in an application could be pro-
hibitive if the expense of synchronizing and switching between them is too large. Likewise,
interrupt and real-time processing requires that the overhead of context switching between pro-
cesses be minimized. In reality, what this motivates is the need for lightweight context switching
between processes. The “weight” of the process itself is often not at issue, rather the expense
of context switching between processes.

Lightweight context switching is usually implemented by having processes share as much
state as possible with each other. This reduces the time to switch between them as common state
does not need saving or restoration. It also has the added advantage of reducing the amount of
memory dedicated to storing per-process information. In Choices, the most commonly shared
state is a process’s address space.

Lightweight context switching is addressed in Choices by having subclasses of Process
and ProcessorContext redefine their context switching methods in a way corresponding to

the kind of process. For example, the Choices system code as implemented in the current
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prototype uses no floating point arithmetic. Therefore, it does not use the floating point
registers. However, applications might require the floating point registers. Saving these registers
when a system or interrupt process relinquishes the processor and restoring them upon its restart
would be wasteful since their values are irrelevant. Therefore, only the particular subclass of
ProcessorContext for ApplicationProcesses redefines checkpoint and restore to save and
restore floating point registers.

This exemplifies an advantage of polymorphism when applied to operating systems. Impor-
tant primitives like giveProcessorTo can be transparently optimized by redefining methods that
they in turn rely on. Another advantage applies to easing operating system portability. When
initially retargeting Choices for a new architecture, it is easiest to implement the checkpoint
and restore methods in the parent ProcessorContext class for that architecture in such a way
as to save and restore the entire context of the processor. The subclasses for various kinds of
processes can then inherit these methods. Optimizations like the one in the previous paragraph
can be added later by redefining the methods in the subclasses. This is a specific case of spe-
cialization by subclassing. The most general case can be implemented first in one class. Later,

this class can be subclassed to implement optimizations that increase performance.

7.6.2 Memory Management Issues and Context Switching

Saving and restoring registers is not the only cost when context switching between two processes.
Changing active address spaces is also costly and can be the most expensive part of a context
switch. However, when two processes that share an address space (Domain) exchange the
processor, no memory management related context switching costs are incurred.

The restore method of Process manages the changing of Domains. Context switching
overhead in Choices is lowest between processes that share a common Domain. Within the
restore method, if the Domain of the process being given the processor matches the Domain
of the invoking process, then no memory context switching overhead is introduced. If the two
processes have different Domains, the AddressTranslation of the Domain of the invoking
process must be deactivated on the processor’s corresponding AddressTranslator and the
AddressTranslation of the Domain of the other process must be activated. The expense of

altering the currently active AddressTranslation varies from architecture to architecture but
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usually involves flushing the contents of various translation caches and registers and reloading
them for the new process.

Changing active AddressTranslations is not the only cost when switching from one Do-
main to another. Inactive MemoryObjects can have their working set of data swapped out
to backing store in order to keep physical memory available. For this reason, little or none of
the data necessary for the execution of a process being resumed may be resident in physical
memory. All a process’s working set must be swapped back in to allow the process to execute.
While it does not increase the cost of the context switch itself, the work done fixing the address
translation faults that will occur once the process begins referencing non-resident locations in
its working set will increase the time the newly resumed process will spend in the system before
it can do any useful work.

The restart time of a process due to reloading non-resident memory can be reduced by
locking the data of critical MlemoryObjects resident in physical memory. This is achieved
by creating a PhysicalMemoryChain representing all the units in such a MemoryObjects
and never deleting that PhysicalMemoryChain (see Section 6.3.3). This optimization is used
sparingly since it decreases the amount of physical memory in the system available for data
from other MemoryObjects.

Choices system objects are addressable from within any Domain. An interrupt or system
process, or the system coroutine of an application process can, therefore, execute in any Do-
main. This is why the code for checkpoint and restore in Figures 7.9 through 7.11 can reload
stack pointers and reference saved contexts of other processes without having to alter the active

Domain.

7.6.3 Context Switching Performance

Table 7.1 shows the context switching overheads between different kinds of processes. These
numbers were acquired on a version of Choices running on a six processor Encore Multimax
with NS32332[Nat86] processors running at 15MHz. The measurements were made with two
processes executing a loop in which each process relinquishes the processor to the other process
by sending itself the giveProcessorTo message with the other process as an argument. In all
these cases, the processes were executing in the same virtual address space (Domain). Both

application processes that use floating point and those that do not were measured. The time
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‘ H System ‘ Application ‘ FP Application ‘
System 88 us 163 ps 176 ps
Application 163 pus | 221 ps 233 us (estimated)
FP Application || 176 us | 233 us (estimated) | 244 ps

Table 7.1: System and application process context switch times

‘ H System ‘ Application ‘ FP Application ‘
System 88 us 289 us 315 us
Application 289 ps | 370 us 391 us (estimated)
FP Application || 315 ps | 391 us (estimated) | 412 ps

Table 7.2: Effect of different virtual address spaces

for a context switch from one system process to another is 88us. Such a context switch only
requires the saving and restoring of processor registers used by the system code, i.e., not the
floating point registers, application stack pointer, etc. The time for a context switch between
two application processes that do not use floating point is 221us. When floating point is used,
the overhead increases to 244us as a result of saving and restoring the floating point registers.

Table 7.2 repeats these measurements but this time the second process is given a different
Domain to execute in. The additional overhead incurred when the Domains differ derives
from flushing the MMU cache and reloading the page tables for the new Domain. Note that
the time to switch between system processes remains unchanged. Because system processes
can execute in any Domain, the Choices context switching code is optimized to not alter the
active Domain whenever two system processes exchange the processor. This is accomplished
by redefining the SystemProcess restore method not to activate a new Domain when it is
resumed. The currently active Domain is used instead. The context switch between two
floating point application processes in different domains is the largest of all context switches at

412pus.

7.7 Exceptions

When an exception occurs, the normal flow of control of a process is suspended and an exception
handler is invoked. Virtually all architectures automatically save some of the processor context
and enter privileged execution mode when an interrupt or trap occurs. The saved context is

usually pushed on an interrupt stack or saved in special registers. Once this context is saved,
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control passes to an operating system entry point. There may either be a common entry point
for all exceptions (in which case some identification of which exception occurred is supplied),
or the hardware may consult a table mapping exceptions to entry points an use entry point
per exception. When the handler at the entry point returns, a return-from-trap or return-
from-interrupt instruction returns the processor to its pre-exception state. In particular, if
the process was running in non-privileged mode before the exception, it will be placed back in
non-privileged mode.

Exception management in Choices is encapsulated by the abstract Exception class. Both
interrupts and traps are managed by instances of Exception subclasses. The Exception class
defines the handle message to correct an exception condition. When Choices is initialized, all
hardware traps and interrupts are mapped to Exceptions. When a trap or interrupt occurs,
the handle message is sent to the corresponding Exception. If the exception condition cannot
be repaired or handled, the currently executing process’s execution is terminated.

When a trap or interrupt occurs in Choices, the system coroutine of the currently executing
process is resumed at an operating system entry point. If a process’s system coroutine was
already executing when the exception occurred, the exception causes the process to perform
a branch directly to the entry point. At such an entry point, architecture dependent code is
invoked to translate the condition to the corresponding Exception object (see Figure 7.12).

The Choices exception handling mechanism assumes that sending the handle message to
an Exception will always return and the trapping or interrupted process will be resumed
where it left off. Because of this assumption, the architecture dependent code that handles the
exception only needs to save any process context that the method invocation mechanism will
not save across the send of the handle message (the method volatile context). In particular,
since method invocation is implemented in C++ with procedure calls, this context consists of
the set of registers that are not saved across a procedure call. The send of the handle message
has no other net effect on the rest of the processes context, so upon its return, only the method
volatile context needs to be restored before the process is resumed.

In general, the exception condition is handled by the system coroutine of the current process.
For example, a page fault is repaired without resuming another process. This is implemented
by having the handle method of the particular subclass simply repair the exceptional condition

and return. If it cannot be handled by the system coroutine of the process active when the
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OperatingSystemEntryPoint( condition )

{

save method invocation volatile context
convert condition into an Exception
Exception—>raise();

restore method invocation volatile context

return-from-exception;

Figure 7.12: Pseudo-Code for an operating system entry point

exception occurred, the handle method sends giveProcessorTo to relinquish the processor to
another process (usually an InterruptProcess) that handles the exception condition. When
the original process is resumed, it returns back to the handle method that was originally invoked
and then returns from there.

Exceptions used to handle interrupts implement handle by making the interrupted process
ready to run again and then signalling the exception condition to another process using a
semaphore. On a multiprocessor, this allows the interrupt to be processed on one processor

while the interrupted process continues to execute on another processor.

7.7.1 Types of Exceptions

The AwaitedInterruptException subclass of Exception defines a new message, await. The
await message is sent to an AwaitedInterruptException to block the current process’s exe-
cution until the interrupt occurs, at which time it can be resumed. The Process is blocked by
placing it in a ProcessContainer associated with the AwaitedInterruptException. If the
interrupt occurs before the AwaitedInterruptException is sent the await message, its occur-
rence is logged so that the next invocation of await will return immediately. Otherwise, if there
was a process waiting then it is resumed. The resumption occurs by sending giveProcessorTo to

the current process with the awaiting Process as the argument. A DefaultResponsibility is
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assigned to the new process so that the ready message will be sent to the interrupted process
and it can run on another processor if one is available.

In addition to interrupts that have processes awaiting them, unawaited interrupts are sup-
ported by Choices. For example, a time-slice interrupt is handled by an instance of the TimeS-
liceInterrupt class. When a time-slice interrupt occurs, another process is chosen from the
current Processor’s idleContainer. The chosen process is assigned a DefaultResponsibility
so that the interrupt process can be run as soon as there is a free processor. The current Process
is then told to give the processor to the new Process by sending giveProcessorTo. If no other
processes are ready to execute, the TimeSliceInterrupt handle method simply returns and

the interrupted process is resumed.

7.8 Process Concurrency

If multiple processes are to cooperate then they must often synchronize their activities. Process
synchronization problems generally fall into one of two categories. The first arises when multiple
processes simultaneously attempt to access a common object. If the accesses must be performed
atomically (i.e. one must be fully completed before any other is begin) then they are said to
be mutually exclusive[PS85]. The instructions that require mutually exclusive access to the
common object are termed a critical section. Mutual exclusion requires any process attempting
to enter a critical section to be blocked while another process is executing the critical section.

The second process synchronization problem arises when one set of processes is produc-
ing data that another set requires. This is termed producer-consumer synchronization[PS85].
Producer-consumer synchronization may require the consumers to be blocked until the pro-
ducers have generated more data, or the producers to be blocked until the consumers have
processed already produced data.

Choices provides spin-locks (implemented by the Lock class) and busy-wait loops (imple-
mented by the BusyWait class) for mutual exclusion and semaphores (implemented by the

Semaphore class) for both mutual exclusion and synchronization.
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acquire | release
Lock 9.38 us | 3.35 us
BusyWait | 5.27 us | 0.437 us

Table 7.3: Cost of the Lock and BusyWait methods on the Multimax

7.8.1 Locks and BusyWaits

Locks are provided for lightweight mutual exclusion. The implementation of Lock assumes
that the processor will not be relinquished while the Lock is held. The acquire message is sent
to a Lock to enter a critical section. The corresponding method simply disables interrupts, and
uses a test-and-set loop to wait for the Lock to be free. The release message is sent to a Lock
to indicate that the Lock is free. The corresponding method releases the lock and re-enables
interrupts if they were enabled when the Lock was first acquired. Since there can only be one
processor competing for a Lock at a time on a uniprocessor computer, versions of Choices for
such computers are free to implement the Lock acquire method solely as disable interrupts and
release as re-enable interrupts (if there were enabled when acquire was sent).

BusyWaits are simplified versions of Locks that, for efficiency, assume that the enabling
and disabling of interrupts is handled by the code using the BusyWait rather than by the
BusyWait itself. A BusyWait, therefore simply implements a test-and-set loop. BusyWalits
are useful for mutual exclusion cases where interrupts are known to already be disabled.

Table 7.3 gives the costs of the acquire and release methods on the Encore Multimax for
both the Lock and BusyWait classes. It should be noted that the C++ compiler in line
expands the acquire and release methods for both classes. This explains why the cost of sending
the release message to a BusyWait is less than the minimum message send costs reported in

Chapter 5.

7.8.2 Semaphores

A semaphore is implemented by the Semaphore class and its P and V methods.'? The defini-
tion of the Semaphore class is shown in Figure 7.13. The implementation of the Semaphore

class’s methods are given in Figures 7.14 through 7.16.

12The names of these methods violate the rule of method names not being capitalized. They were chosen to
reflect the corresponding operations on a Dijkstra semaphore.
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class Semaphore : public Object {
protected:

BusyWait mutex;

int count;

ProcessContainer * queue;

SemaphoreResponsibility mySemaphoreResponsibility;
public:

Semaphore( int initialCount );

~Semaphore();

virtual void P();
virtual void V();

Figure 7.13: The Choices Semaphore class

As shown in Figure 7.14, the implementation of the P method first disables interrupts then
acquires mutually exclusive access to the semaphore count by sending the acquire message to
the mutex instance variable (a BusyWait). It then decrements the count and tests to see if
the invoking process must block. If the count is greater than or equal to zero then the invoking
process can continue. This is accomplished by sending release to the mutex instance variable
in order to release mutually exclusive access on the semaphore count and then re-enabling
interrupts and returning.

If the count went negative, then the invoking process must be blocked. The invoking pro-
cess cannot add itself to the semaphore’s wait queue for the same reasons discussed in Sec-
tion 7.5.4. It must be added by the process being given the processor. To accomplish this,
first getNextReadyProcess is sent to the current Processor in order to get another process to
run. Then, that Process’s responsibility is set to the mySemaphoreResponsibility Semaphore
instance variable. The mySemaphoreResponsibility variable is an instance of the Semaphor-
eResponsibility class. SemaphoreResponsibility redefines perform to place the blocking
process in the semaphore’s wait queue (see Figure 7.15). Finally, the processor is relinquished

and the next process is run by sending giveProcessorTo to the current Process.
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Semaphore::P()
{
int wasInterruptable = thisProcess()—>becomeUninterruptable();
mutex.acquire();
count = count — 1;
if( count < 0) {
Process * nextProcess = thisProcessor()—>getNextReadyProcess();
nextProcess—>setResponsibility( mySemaphoreResponsibility );
thisProcess()->giveProcessorTo( nextProcess );
}
else {
mutex.release();

}

if( wasInterruptable ) thisProcess()—>becomelnterruptable();

Figure 7.14: Implementation of the Semaphore P method

class SemaphoreResponsibility : public Responsibility {
Semaphore * mySemaphore;

SemaphoreResponsibility( Semaphore * sem ) { mySemaphore = sem; };
void perform( Process * oldProcess );

b

SemaphoreResponsibility::perform( Process * oldProcess )

{
/] mySemaphore is an instance variable set when the
// SemaphoreResponsibility is created. It references
/] the associated semaphore.
mySemaphore->queue->add( oldProcess );
mySemaphore—>mutex.release();

Figure 7.15: Implementation of the SemaphoreResponsibility class
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Semaphore::V()
{

int wasInterruptable = thisProcess()—>becomeUninterruptable();
mutex.release();
count = count + 1;
if( count <=0) {
Process * waiter = queue->remove();
mutex.release();
waiter—>ready();

}
else {

mutex.release( );
}

if( wasInterruptable ) process—>becomelnterruptable();

Figure 7.16: Implementation of the Semaphore V method

The V method is implemented by similarly acquiring mutually exclusive access to the
semaphore count, incrementing the count, and testing if the count is still negative or zero.
If the count is positive, then no other processes are blocked and the invoking process can be
removed by releasing the mutual exclusion on the count, re-enabling interrupts, and returning.
If there is a process waiting, then it is removed from the Semaphore’s block queue and sent

the ready message.

7.8.3 Alternate Semaphore Implementations

The GraciousSemaphore subclass of Semaphore implements a form of semaphore that
causes the current process to immediately relinquish the processor when the V messages is
sent the GraciousSemaphore and there are blocked processes. The executing process sus-
pends itself and resumes a waiting process by sending itself giveProcessorTo with the Process
corresponding to one of the waiting processes as an argument. The implementation of the

GraciousSemaphore V method is given in Figure 7.17.
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GraciousSemaphore:: V()
{
int wasInterruptable = thisProcess()—>becomeUninterruptable();
mutex.release();
count++4;
if( count <=0) {
Process * waiter = queue->remove();
mutex.release();
thisProcess()—>giveProcessorTo( waiter );
¥
else {

mutex.release( );
}

if( wasInterruptable ) thisProcess()—>becomelnterruptable();

Figure 7.17: The GraciousSemaphore V method

P \Y
65.7 pus | 65.4 pus

Table 7.4: Cost of the Semaphore methods on the Multimax

7.8.4 Semaphore Performance

Table 7.4 gives the cost of sending the P and V messages to a Semaphore on the Encore
Multimax. The data were acquired by first sending the P message to a Semaphore with a
positive count, and then sending the V message. Therefore, these numbers reflect the cost
of acquiring a free Semaphore and releasing a Semaphore on which no other processes are
blocked. If a Semaphore is not free when the P message is sent to it, then the time before
the P method returns depends on the length of time until another process sends the V message
to the Semaphore. If another process were blocked awaiting the Semaphore when the V
message was sent, then the time would increase by the amount of time necessary to dequeue
the waiting process and send it the ready message.

To give an estimate of the overhead of using semaphores for synchronization, a test was run
where two system processes looped exchanging the processor by alternately sending the P and V

messages to a pair of semaphores. The first process sent the V message to one semaphore then
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the P message to another, while the second process did the opposite. GraciousSemaphores
were used for this test to affect immediate context switches when the semaphore V operations
were performed. The result is that four context switches occur for each iteration of the loop. A
single iteration of the loop took 659 ps. Using the data in Table 7.1, a context switch between
a pair of system processes takes 88 pus. Subtracting off the cost of the four context switches
and halving, therefore, leaves a minimum overhead of approximately 154 us from the time a

process blocks on a semaphore as the result of a P, until the process is restarted.

7.9 Summary

The Choices process management provides an object-oriented interpretation and implementa-
tion of process scheduling, context switching, and exception handling. Choices attempts to
let the operating system optimize context switching based on the requirements of the pro-
cesses themselves. This is accomplished by using an abstract class to define a process and then
subclassing that class to implement the process abstraction with various performance enhance-
ments. Exception handling in Choices is likewise mapped into the object-oriented paradigm.
An object represents each exception which can occur. That object is sent a message whenever
an exception occurs.

Object-oriented interpretations of process management and exception handling have re-
sulted in opportunities for both performance tuning and portability advantages in Choices.
Portability is increased by localizing processor dependencies in the ProcessorContext ob-
jects. To quickly get Choices “up and running” on a new architecture, an initial Processor-
Context class for a new processor architecture can implement a full context save/restore with
its checkpoint and restore methods. Later, once the system is stable and running, this class can
be subclassed to implement the performance optimizations made possible by taking advantage
of the requirements of the particular kind of process the ProcessorContext represents. Even
once the new classes are implemented, inheritance still allows them to share common code
through the superclass.

The Choices giveProcessorTo primitive provides the mechanism to affect context switching
between processes. Policy decisions are implemented by different scheduling and synchroniza-

tion objects, for example, Semaphores or AwaitedInterruptExceptions. In many cases,
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Choices uses inheritance to alter policy decisions. For example, the GraciousSemaphore class
redefines the V method of Semaphore to implement a different policy when a process blocked
on a semaphore is resumed. Even a Semaphore may have different policies. The implemen-
tation of Semaphore only relies on the interface ProcessContainer provides. Therefore,
various classes implementing the ProcessContainer signature can be used to alter the behav-
ior of a Semaphore. For example, the ProcessContainer implementing the queue of blocked
processes may implemented a FIFO or priority-based scheme.

Process context switching is a very low level architecture dependent operation. The exam-
ples in Figures 7.9 through 7.11 show that the object-oriented paradigm can successfully handle
such low level details as context switching, while at the same time presenting abstract, reusable
interfaces.

In summary, Choices provides a flexible, efficient, and object-oriented interpretation of

process context switching, scheduling, and exception handling.
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Chapter 8

Conclusions

As discussed in Chapter 3, object-oriented programming techniques have been reported to pro-
vide many software engineering benefits. The goal of this thesis is to evaluate the success of
object-oriented techniques at addressing problems of operating system portability, maintain-
ability, extensibility and efficiency as discussed in the first two chapters. This goal is met by
detailing an experiment to design and implement an operating system using object-oriented
techniques throughout. The result of this experiment is the Choices architecture for operating
system design and construction. Choices provides an extensible model of the internal frame-
work of an operating system that does not penalize performance. It includes a hierarchy of
software classes that can be specialized to build operating systems for particular applications
or architectures. The hierarchy contains abstract primitive classes to define interfaces and ab-
stractions, and concrete subclasses to define objects with a particular desired behavior or that
implement a particular algorithm. Choices is successful at using object-oriented programming
techniques to implement common operating system algorithms and data structures while re-
maining efficient. In this conclusion, by using examples from Choices, I evaluate how well in
practice the proposed benefits of constructing object-oriented operating systems put forth in

Chapter 4 were achieved.

8.1 Portability

This thesis illustrates in numerous places how object-oriented programming techniques can

help increase operating system portability. Abstract classes such as the AddressTranslation
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and AddressTranslator classes described in Section 6.2 and the ProcessorContext class
described in Section 7.3 all successfully hide the underlying details of a particular machine
architecture. Concrete classes implementing these abstract signatures are a convenient way to
encapsulate architectural dependencies. They simultaneously preserve the interface and isolate
architecture independent code from the specifics of any particular computer architecture.
Higher level machine dependencies are also easily encapsulated within abstract classes. For
example, Choices successfully uses subclasses of the MemoryObject class described in Sec-
tion 6.4 to encapsulate hardware dependencies of various permanent storage disks and disk

interfaces used by the various computers to which Choices has been targeted.

8.2 Code and Interface Sharing and Reuse

Examples of code sharing/reuse and interface sharing abound in Choices. Often it is just an
interface that is shared. For example, the interface defined by the ProcessorContext class is
implemented for various processor scheduling algorithms as described in [Ley88]. Often much
code is shared as well. For example, the concrete versions of AddressTranslation for various
architectures substantial amounts of code via an abstract superclass. Likewise, subclasses of
ProcessorContext specific to different kinds of process on different architectures all share
code through the superclass for that architecture (see Section 7.3).

Another example of interface sharing is described in Section 6.4. The interface provided
by the MemoryObject class is inherited by a large number of classes including classes to
represent: Berkeley and System V UNIX inodes[]MLRCS88], MS-DOS files [MCRLS88], disks
from the Encore Multimax and AT&T W(S-386 computers, partitions of disks, and subranges
of other MemoryObjects. The Berkeley and System V UNIX inode classes, likewise, share

substantial code through a UnixInode superclass.

8.3 Separation of Policy From Mechanism

Choices demonstrates how policy and mechanism can be separated cleanly by object-oriented
programming. The ProcessContainer class is a good example of defining a policy interface

with a signature and implementing that signature for numerous policies with concrete classes.
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Once the signature for ProcessContainer was defined, many subclasses were implemented by
an individual mostly unaware of the rest of the Choices process management system[Ley88].
Two other good examples of the separation of policy from mechanism can be found in the
virtual memory system. First, the selectUnitForRemoval method of the MemoryObjectCache
class is redefined to implement different memory replacement policies (see Section 6.5). Second,
MemoryObject classes can redefine the policy governing layout and placement of logical data

on permanent storage by redefining the read and write methods.

8.4 Optimization Through Specialization

The best example of using subclassing to allow optimizations by specialization occurs in the
Choices process management system. The subclassing of Process and ProcessorContext in
order to optimize context switching as described in Section 7.3 yields significant performance

increases as summarized in Section 7.6.3.

8.5 Trading Portability for Efficiency

The example of building a heavyweight ProcessorContext for a particular architecture then
subclassing it later for performance increases, as described in Section 7.6.1 supports the propo-
sition that portability can be an initial goal, but that subclassing can later be used to optimize

the system without impacting existing code.

8.6 Adaptable Interfaces

An object-oriented operating system as defined in Chapter 4 requires an object-oriented in-
terface to system services. The NameServer and ObjectProxy mechanisms described in
Chapter 5 provide this for Choices. Together, they provide a very flexible application interface
that is customizable to individual processes. The performance of this mechanism is shown in

Section 5.2 to be comparable to the interfaces provided by traditional operating systems.
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8.7 Efficiency

The overall efficiency of Choices detailed throughout Chapters 5, 6, and 7 lends credence to the
ability of object-oriented programming techniques to support efficient operating system software
development. With few tools and little implementation experience, we were able to develop a
system which performs within a few percent of UNIX on the same hardware. Some features
of Choices are actually faster than UNIX. Much of this performance is owed to the efficient
of C++. However, since Choices does not rely on any features specific to C++, using any
efficiently compiled object-oriented language with the characteristics discussed in Section 4.4.2

should yield similar results.

8.8 Future Work

The most promising direction to take this research next is towards distributed systems. The
uniformity of accessing data and performing computation using object message sending should
be an invaluable aid for building distributed systems. In conventional distributed systems,
data within an application’s address space are usually accessed with absolute addresses or by
dereferencing pointers to memory, while remote objects are accessed by sending a message to
a remote entity. Local data within an application’s address space could likewise be accessed
by messaging, but this is usually inefficient and harder to program. Object-oriented operating
systems easily support the distributed system model since the encapsulation provided by objects
allows method invocation to be implemented as local procedure invocations or remote procedure
calls (RPC’s)[BN84]. All that is needed is to extend object identities to be valid across nodes in a
distributed system. Doing this has the advantage of presenting a single model of computation:
sending messages to object. Objects within an application access each other this way and
objects access objects in other address spaces, or even in address spaces on different computers
the same way.

The implementation of such a scheme is similar to the “stubs” used in traditional RPC
systems. A reference to an object that is actually remote will, in reality, reference a local
surrogate object which acts as the stub for the remote object. When a message is sent to a
surrogate, its methods marshall the arguments together and send them to a remote surrogate

which in turn unmarshalls them and sends the message to the actual target object. One
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advantage of such a system is that the inter-surrogate protocol can be specialized for different
classes of objects[Sha86]. Generic RPC might work for most cases, but certain surrogates might
use a protocol highly optimized for the kinds of methods they are forwarding.

One problem with extending the object-oriented model to encompass distributed systems
is the latency that might be introduced while crossing machine and address space boundaries.
One of the assumptions of object-oriented programming is that message sends are relatively
cheap compared to the operation performed. This is especially true in statically typed object
oriented languages since often the message send can be converted directly to a procedure call
or to a procedure call after a single indirection. If this assumption is no longer valid, questions
about the efficiency of distributed object-oriented systems might arise. However, this cost is
already familiar to designers of distributed systems. Remotely accessed entities are usually
of sufficient “weight” so as not to matter. Some of this performance loss might be mitigated
by using specialized surrogates as well. A specialized surrogate could cache some information
about the remote object locally in order to reduce the communication to the remote object and,

therefore, increase performance.

8.9 Summary

In summary, constructing object-oriented operating systems is a successful technique, both from
a software engineering standpoint and an efficiency standpoint. A set of operating system com-
ponents, maintained as a class hierarchy, provides both an abstract and a practical classification
scheme for existing algorithms as well as revealing many new algorithms in its own right. Using
a set of operating system algorithms and data structures organized within an object-oriented
framework provides useful guidelines to the developer, and reduces any subsequent efforts to re-
target or modify the system. It facilitates both customization and optimization of the system.
This thesis demonstrates all of the benefits can be achieved without significant performance

sacrifices.
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